

Cambois Connection – Marine Scheme Environmental Statement – Volume 3 Appendix 8.1: Benthic Survey Report (Phase 1 and 2)

Sse Renewables Classification: Final	Cambois Connection – Marine Scheme Appendix 8.1: Benthic Survey Report (Phase 1 and 2)	Doc No: A-100796-S01-A-REPT-028
Status: Final		Rev: A01

Revision Information					
Rev	Issue Status	Date	Originator	Checker	Approver
A01	Issued for Use	24/07/2023	JO	NL	NL

This document contains proprietary information belonging to Xodus Group Ltd or affiliated companies and shall be used only for the purpose for which it was supplied. It shall not be copied, reproduced, disclosed or otherwise used, nor shall such information be furnished in whole or in part to third parties, except in accordance with the terms of any agreement under which it was supplied or with the prior consent of Xodus Group Ltd and shall be returned upon request.

Cambois Connection Benthic Ecology Baseline

Phase 1 and 2 Survey Report

Kerrie Craig, Consents Manager Berwick Bank Wind Farm 29 March 2023

OUR VISION

Working to create a world powered by renewable energy

Document history

Author	Victoria Rutherford	28/04/2023
Checked	Michelle Elliott	31/05/2023
Approved	Stuart McCallum	01/06/2023

Client Details	
Contact	Kerrie Craig
Client Name	Kerrie Craig, Consents Manager
	Berwick Bank Wind Farm
Address	SSE Renewables
	1 Waterloo Street
	Glasgow
	G2 6AY

Issue	Date	Revision Details
А	02/06/2023	First Issue

Local Office:

Units 5 & 10, Stephenson House Horsley Business Centre Horsley Northumberland NE15 0NY Tel: +44 (0) 1661 312 100 Registered Office:

The Natural Power Consultants Limited The Green House Forrest Estate, Dalry Castle Douglas, Kirkcudbrightshire DG7 3XS

Reg No: SC177881

VAT No: GB 243 6926 48

Contents

Intro	duction	2
1.1.	Project Background	2
1.2.	Document Purpose	2
Surv	ey Methodology	3
2.1.	Benthic Baseline Survey Design	3
2.2.	Benthic Grab	3
2.3.	Drop Down Video (DDV) Survey	3
2.4.	Benthic grab survey	4
Sam	ole Analysis	7
3.1.	DDV Imagery Analysis	7
3.2.	Benthic Faunal Analysis	7
3.3.	PSA and TOC Analyses	8
3.4.	Contaminants Analysis	9
Data	Analysis	10
4.1.	Benthic Grab Analysis	10
4.2.	Biotope Assignment	11
4.3.	Benthic Habitat Mapping	11
Resu	lts	12
5.1.	DDV	12
5.2.	Infauna	12
5.3.	Biomass	17
5.4.	PSA and TOC	19
5.5.	Contaminants	23
5.6.	Biotope Assignment	23
5.7.	Benthic Habitat Mapping	29
5.8.	Species and Habitats of Conservation Importance	34
Conc	lusion	35
rence	S	36
endice	S	37
	Introd 1.1. 1.2. Surve 2.1. 2.2. 2.3. 2.4. Samp 3.1. 3.2. 3.3. 3.4. Data 4.1. 4.2. 4.3. Resu 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. Concerences endice	Introduction

Table of Figures

Figure Number	Figure Title	Page Number
Figure 2.1	Cambois Connection Benthic Sampling Stations	6
Figure 5.1	Univariate diversity indices at benthic grab sampling stations	14
Figure 5.2	Station groupings revealed through cluster analysis of benthic cluster analysis	15
Figure 5.3	NMDS plot showing clustering of benthic grab sampling stations based on species composition	16
Figure 5.4	NMDS plot showing clustering of benthic grab sampling stations based on species composition, coloured by the Folk (1954) classification of the sediment	17
Figure 5.5	Biomass proportions of major faunal groupings at subtidal benthic grab sampling stations along the export cable corridor	18
Figure 5.6	PSA and TOC at subtidal benthic grab sampling stations along the export cable corridor	20
Figure 5.7	Folk (1954) classification of sediment at benthic grab sampling stations along the export cable corridor	21
Figure 5.8	Percentage sediment groupings at each subtidal benthic grab sampling stations along the export cable	22
Figure 5.9	Subtidal benthic biotope classification along the export cable corridor	28
Figure 5.10	Subtidal benthic characterisation habitat map along the export cable corridor	30-33

Table of Tables

Table Number	Table Title	Page Number
Table 3.1	The classification of sediment particle size ranges into size classes	8
Table 3.2	Chemical contaminants sediments analysed for	9
Table 5.1	Ten most abundant species present and sampling stations they were found	13
Table 5.2	Station groupings from SIMPROF analysis of benthic samples	16
Table 5.3	Subtidal biotopes identified during analysis of video imagery, found within the export cable corridor	23-24
Table 5.4	Subtidal biotopes identified during analysis of video imagery, found within the export cable corridor	24
Table 5.5	Subtidal biotopes found within the export cable corridor	26-27
Table 5.6	Benthic biotopes used in Habitat Mapping	29

1. Introduction

1.1. Project Background

Berwick Bank Offshore Wind Farm (OWF) (the Project), developed by Berwick Bank Wind Farm Limited (BBWFL) (which is a wholly owned subsidiary of SSE Renewables), is an offshore wind farm development situated in the Outer Firth of Forth, Scotland. The Project has the potential to deliver up to 4.1 GW of installed capacity, generating enough clean, renewable energy to power over five million homes.

The Project secured a grid connection agreement for 2.3GW connecting in 2026 / 2027 at Branxton, near Torness in East Lothian, Scotland. The Project has also signed connection agreement with National Grid for up to 1.8GW at Cambois, Blyth, Northumberland, England, herein referred to as the Cambois Connection. This will form a separate planning application to be submitted in 2023. An Environmental Impact Assessment (EIA) will be caried out as part of planning applications to Marine Scotland and the Marine Management Organisation (MMO) and an offshore benthic ecology baseline survey campaign is required to inform the EIA.

Natural Power Consultants Ltd (Natural Power) has been appointed to manage and execute the delivery of a benthic ecology baseline survey of the Cambois Connection export cable corridor (ECC) running from Berwick Bank OWF to the landfall location at Cambois, in Blyth, Northumberland.

Due to poor weather in the second half of 2022, the survey work and subsequent reporting was split into two Phases. The Phase 1 survey included benthic grab sampling at 58 planned survey stations, drop down video (DDV) at 27 of the survey stations and incorporation of geophysical survey data and phase 1 survey data into benthic habitat mapping. The Phase 2 survey included DDV at an additional 43 sampling stations and incorporation of Phase 1 and Phase 2 survey data into benthic habitat mapping. It should be noted that the benthic survey area initially included a western ECC option which traversed the Farnes East Marine Conservation Zone (MCZ), initial survey work included grab sampling and DDV at stations located within this western ECC. However, due to feedback from statutory stakeholders, including Natural England, BBWFL made the decision to remove the western ECC option, therefore grab samples taken at stations within this western ECC corridor were not subsequently analysed and are not discussed within this report.

1.2. Document Purpose

This report has been produced in order to provide BBWFL with the findings of both the Phase 1 and Phase 2 benthic ecology baseline surveys covering the Cambois Connection ECC, in order to meet two specific objectives of the survey:

- To characterise the benthic environment that is present within the ECC; and
- To identify the occurrence and distribution of any habitats and species of conservation importance.

2. Survey Methodology

2.1. Benthic Baseline Survey Design

The locations of benthic grab and DDV sampling locations were based upon existing publicly available datasets describing existing seabed conditions and biotopes within the ECC area, specifically:

- JNCC MPA Mapper;
- Nature Scot SiteLink;
- Cefas OneBenthic Data Extraction Tool;
- EUSeamap Substrate Type (2021);
- EUSeamap MSFD Benthic Broad Habitat Types (2021); and
- EMODnet Bathymetry Mean Depth.

Figure 2.1 shows the proposed sampling stations and predicted sediment types. EUSeamap MSFD Benthic Broad Habitat Types (2021) data suggests the area consists mainly of a mixture of mud, sand and coarse sediment with potential areas of rock and biogenic reef and an area of mixed sediment nearshore.

2.2. Benthic Grab

Sampling stations were positioned along the extent of the ECC providing sufficient coverage of the area (Figure 2.1). Given the heterogeneity of the substrate type across the ECC 58 sample stations were identified, providing sufficient coverage to characterise the benthic habitat across the entire survey area.

A subset of 15 benthic sampling stations were identified for contaminant sampling, situated in finer sediment where this type of analysis can be performed and with a higher frequency of sampling stations closer to the shore where higher levels of contaminants are typically expected.

2.3. Drop Down Video (DDV) Survey

Drop Down Video (DDV) transects were conducted at a total of 70 locations (sampling stations) (27 sampling stations during Phase 1 and 43 sampling stations during Phase 2) in the designated survey area using the Joint Nature Conservation Committee (JNCC) protocol (Davies *et al.*, 2001; JNCC, 2018) and the Epibiota Remote Monitoring from Digital Imagery: Operational Guidelines (Hitchin *et al.*, 2015). Stations were selected to cover all sediment types and habitats. Additionally, where reef features were encountered, assessments were made using current available guidance notes i.e., Gubbay (2007) and Limpenny *et al.* (2010) for potential *Sabellaria* reefs, and Golding *et al.* (2020) and Irving (2009) for potential cobble reefs.

All sample locations were sampled using an observation class Remotely Operated Vehicle (ROV), manually manoeuvred by an experienced surveyor via remote control. The ROV recorded video footage within the unit at 4K resolution which was viewed in real time at the surface with a minimum of three minutes of video footage collected at each sampling station. During deployment, whilst recording video imagery, 'frame captures' were collected using a remote controller, with a minimum of three still images being captured per sampling station. The system was equipped with laser points (10cm apart)

to provide an indication of scale, and also video LED flood lights (6000 lumens) to provide illumination of the seabed.

Surveys were undertaken during appropriate tides/weather conditions to allow optimum visual imagery capture. At each sampling station, the immediate survey area was checked for obstructions e.g., static gear. The ROV was prepared for deployment while the vessel moved into position to start the drop. The vessel approached the sample location identified and positioned itself so that wind and tide caused the vessel to drift away from the equipment whilst deployed.

The image feed was reviewed as the data was collected to enable the confirmation image quality and any seabed features recorded.

Notes on the visible sediment conditions, seabed features and fauna were made in-situ together with Differential Global Positioning System (DGPS) position, water depth and date/time. Positions were fixed at the start and end of each deployment and a continuous log of GPS data was recorded whilst the camera was deployed. The ROV was recovered to the vessel and the haul line was coiled into a box to ensure it did not tangle for any subsequent deployments and to avoid trip hazards. The vessel then moved to the next sampling station. The ROV was also used to check suitability and ensure no Annex I (EU Habitats Directive 92/43/EEC) or sensitive habitats) were present at benthic grab stations.

2.4. Benthic grab survey

The grab survey was undertaken at 58 sampling stations along the ECC, in order to collect information on the physical nature of the seafloor and the composition of the infauna, as per Limpenny *et al.,* (2010), Coggan *et al.,* (2007), and JNCC Marine Monitoring Handbook Procedural Guidance 3-5 (Holt & Sanderson, 2001).

Benthic sampling was undertaken using a 0.1m² mini-Hamon or day grab (a day grab was used for the contaminated sediment sampling). At each sampling station the grab was deployed, and once fired on the seabed, recovered. After successful grabs were recovered, providing each grab sample was deemed acceptable by the lead surveyor (according to the relevant protocols), the samples were fully described (sediment and biological characterisation) and a labelled photograph taken. The sample was deemed unacceptable if; the sample represented less than half the total capacity, the grab had not struck the seabed in a flat area resulting in an incomplete sample, or the grab jaws were not fully closed. All locations where a grab failed were recorded using GPS positions. Up to three failed attempts per sampling station were allowed, prior to abandoning that sampling station.

At each station a subsample of at least 100 ml was collected for Particle Size Analysis (PSA), Total Organic Carbon (TOC) analysis using a metal scoop and placed in a sample bag with an inside and outside label clearly marked with the sampling station. Samples were collected and stored in accordance with the NMBAQC PSA protocol. Each benthic fauna sample was sieved on board through a 1mm sieve, larger rocks/shells were placed directly into the sample pot. The sieved residues were then gently backwashed into sealable containers and preserved by adding borax buffered 4-5% saline formalin solution. Each sample was labelled clearly on the lid and an additional waterproof label placed in the container which recorded the client, survey name, date, area, station number and grab number. Benthic faunal sampling was carried out in accordance with JNCC Procedural Guideline No.3-9 (Thomas, 2001).

At fifteen pre-determined stations (stations: 2, 5,6,8, 9, 13, 14, 15, 19, 22, 23, 25, 26, 48, 30) a separate grab was deployed for collecting contaminants samples from an undisturbed sediment surface., Samples were taken with the appropriate metal or plastic scoop and transferred to appropriate labelled

containers for transportation in a cool box prior to analysis. The samples were stored in accordance with the guidelines for monitoring contaminants in sediments (OSPAR, 2014).

On successful completion of the work at that sampling station, the vessel moved to the next station where the procedure was repeated until all stations were sampled. A full survey log was maintained throughout the survey detailing time of sampling, GPS position, number of attempts required, station number, water depth, physical characteristics of the sample, digital image number and presence of any other relevant features.

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

55°15'N

Project: Cambois Connect Benthic Baseline		
Title: Figure 2.1: Cambois Connection Benthic Sampling Stations		
Key Berwick Bank site boundary 12 nautical mile (NM) limit England/Scotland territorial boundary Benthic sampling stations DDV only Grab & DDV		
Cable corridor segment IDs 05 07 12 15 16 EUSeamap (2021) MSFD Benthic Broad Habitat Types		
Infralittoral coarse sediment Infralittoral rock and biogenic reef Infralittoral sand Infralittoral mud Circalittoral rock and biogenic reef Circalittoral sand		
Circalittoral mud Offshore circalittoral mixed sediment Offshore circalittoral coarse sediment Offshore circalittoral rock and biogenic reef Offshore circalittoral sand Offshore circalittoral mud		
© OpenStreetMap contributors. EUSeamap is licensed under CC-BY 4.0 from the European Marine Observation and Data Network (EMODnet) Seabed Habitats initiative (www.emodnet-seabedhabitats.eu), funded by the European Commission.		
Scale @ A3: 1:500,000 Coordinate System: WGS84 UTM Zone 30N Graticules: WGS84 0 5 10 15 20 km		
Date: 12-05-23 Prepared by: RB Checked by: ME		
Ref: GB200769_M_103_C		
Drawing by: The Natural Power Consultants Limited The Green House Forrest Estate, Dairy Castle Douglas, DG7 3XS, UK Tel: +44 (0)1644 430008 Fax: +44 (0)1644 430008 Fax: +44 (0)1644 299 1236 Email: sayhello@naturalpower.com www.naturalpower.com		

3. Sample Analysis

3.1. DDV Imagery Analysis

DDV and still images were reviewed, processed, and analysed in accordance with current guidelines, including the standards for analysis in visual seabed surveys (BS EN 16260:2012) and Turner et al., 2016. Imagery was also assessed using the NMBAQC image quality categories whereby the video footage is allocated a score of 'good', 'poor' or 'very poor'. The imagery was reviewed for features of conservation interest, including an Annex I reef assessment following the appropriate JNCC guidance notes (Gubbay, 2007; Irving, 2009; Golding et al., 2020). The main purpose of the analysis of the imagery was to identify what fauna and broadscale habitats exist in a video record or still image, and to provide quantitative and semi-quantitative data and to note where one substrate type changes to another. The results of analyses are described in this report and provided in MS Excel spreadsheet proformas, along with image reference collections for each habitat and taxon recorded, and video clips for each broadscale habitat and biotope. The DDV footage was initially viewed rapidly (x4 speed) in order to segment it into sections representing different broadscale habitats. The start and end points of each segment were logged, and each segment treated as a separate record and subsequently subjected to more detailed analysis. Brief changes in substrate type lasting less than 5m were considered as incidental patches are recorded as part of the habitat description, or as a 'habitat mosaic'. The DDV footage was then viewed at normal or slower than normal speed, noting the physical and biological characteristics, such as substrate type and percent cover (in line with current guidelines), seabed character, conspicuous taxa, and life forms along with any modifiers or visible impacts present. Taxa were identified to the most detailed taxonomic level possible and recorded with abundance counts for erect species and percent cover estimated visually for colonial/encrusting species, as well as categories based upon the MNCR SACFOR abundance scale (Hiscock, 1996). Where appropriate, any relevant features of conservation interest or Annex I habitats were noted at each sample location. Quantification of epifauna was performed manually for DDV analysis and recorded directly in a proforma spreadsheet (Appendix E).

All data were recorded as each DDV clip or still image was analysed and European Marine Observation and Data Network (EMODnet) and Marine Environmental Data and Information Network (MEDIN) compliant proforma spreadsheets were used to input imagery data and metadata, with reference to the latest species dictionary from the World Register of Marine Species (WoRMS¹) database.

3.1.1. Annex I Assessment

The DDV footage was reviewed and analysed in accordance with current guidance to identify any potential Annex I features. Where reef was recorded within DDV footage current assessment methods for biogenic or stony reefs were used (Turner *et al.*, 2016, Gubbay, 2007; Irving, 2009; Golding *et al.*, 2020).

3.2. Benthic Faunal Analysis

All biota was extracted and identified according to the National Marine Biological Analytical Quality Control (NMBAQC) Taxonomic Discrimination Protocol (TDP) (Worsfold *et al.*, 2010). Samples were washed with tap water through sieves to remove the preserving agent, with different sized sieves used to aid in sorting. To further aid sorting and to avoid damage to specimens, light organic matter and fauna were elutriated (floated off) and sorted separately. The larger retained contents were sorted in a white sorting tray, whilst smaller fauna were sorted under a stereomicroscope.

¹ https://www.marinespecies.org/

Fauna were identified to the lowest taxonomic level practicable using appropriate keys and references and enumerated. Species that were present as juveniles were differentiated from adults, where possible. Colonial organisms were recorded as present or absent and broken or damaged specimens that may not be fully identified were described as 'Taxa Indet.' (indeterminate). Juvenile specimens not displaying adult characteristics necessary for identification to species were described as 'Taxa juv.', and groups not generally identified to species because of taxonomic or morphological reasons were recorded as Taxa sp.

For each sample, the biomass was calculated following identification and enumeration of individual species. Sample species were sorted into five major faunal taxonomic groups consisting of 'Cnidaria', 'Annelida', 'Crustacea', 'Mollusca', 'Echinodermata' and 'other', and the relative weights calculates.

3.3. **PSA and TOC Analyses**

PSA was determined to fractions ranging between <63 μ m and >63 mm, using NMBAQC² methodology which utilises stacked sieves for >1 mm fraction and laser granulometry for the <1 mm fraction. Sediment samples were processed through stacked sieves at particle size diameters of 0.5 phi intervals over the range 64 mm to 63 μ m (Wentworth Scale) (Table 4.1). The sieves were shaken for 15 minutes, and the contents of each sieve subsequently weighed. Finer fractions (<63 μ m) were oven dried and weighed as a separate fraction, with further laser diffraction analysis if this fraction is >5 % of the total sample.

The classification system used for sediment type and sorting index were carried out according to the methods of Buchanan *et al.*, (1984). For reporting purposes, the PSA results per sampling station were expressed as a cumulative percentage of each particle size passing through each sieve. These percentages were then converted to absolute percentages retained on each sieve.

All samples were analysed for TOC through Loss on Ignition (LOI) whereby each sample is weighed before being heated to a high temperature (105°C) until all the carbon dioxide from carbonates is burned off and the sample is weighed again. The difference in weights is the LOI which is then converted to TOC using a conversion factor.

Range of Particle Size	Wentworth Sediment Classification	Phi Unit
<63µm	Silt/Clay	>4 Ø
63-125 μm	Very Fine Sand	4 Ø, 3.5 Ø
125-250 μm	Fine Sand	3 Ø, 2.5 Ø
250-500 μm	Medium Sand	2 Ø, 1.5 Ø
500-1000 μm	Coarse Sand	1 Ø, 1.5 Ø
1000-2000 µm (1 – 2mm)	Very Coarse Sand	0 Ø, -0.5 Ø
2000 – 4000 µm (2 – 4mm)	Very Fine Gravel	-1 Ø, -1.5 Ø
4000 -8000 µm (4 – 8mm)	Fine Gravel	-2 Ø, -2.5 Ø
8 -64 mm	Medium, Coarse & Very Coarse Gravel	-3 Ø to -5.5 Ø
64 – 256 mm	Cobble	-6 Ø to -7.5 Ø
>256 mm	Boulder	< -8 Ø

 Table 3.1:
 The classification of sediment particle size ranges into size classes

Source: adapted from Buchanan, 1984

² https://www.nmbagcs.org/ga-standards/

3.4. Contaminants Analysis

Samples were analysed by a UKAS accredited and MMO validated laboratory, against a full suite of contaminated sediment criteria in line with Cefas action levels and Canadian guidance levels (CMME, 2001). These guidance documents list prescribed levels against which the samples were analysed. Samples were analysed for the range of contaminants provided in Table 3.2:

Sediment contaminants				
Arsenic	PCB28	Acenaphthene	Fluoranthene	
Cadmium	PCB52	Acenaphthylene	Fluorene	
Chromium	PCB101	Anthracene	Indeno[123,cd]pyrene	
Copper	PCB118	Benz(a)anthracene	Naphthalene	
Lead	PCB138	Benzo(a)pyrene	Phenanthrene	
Mercury	PCB153	Benzo[b]fluoranthene	Pyrene	
Nickel	PCB180	Benzo[ghi]perylene	Total hydrocarbon (THC)	
Zinc		Benzo[k]fluoranthene		
Dibutyltin		Chrysene		
Tributyltin		Dibenz(a,h)anthracene		

Table 3.2: Chemical contaminants sediments analysed for

4. Data Analysis

4.1. Benthic Grab Analysis

All data collected from surveys, including up to date species nomenclature in accordance with the WoRMs database, abundance, biomass and physical parameters such as PSA and depth, were collated in excel spreadsheets. Based on PSA results, each sampling station was assigned a Folk (1954) classification using the Folk Ternary diagram provided in the JNCC guidance (Parry, 2015) and the percentage composition of gravel, sand and mud was calculated.

A suite of statistical analyses on the data collected from the grab survey work were undertaken using the "vegan" package in R, with some univariate indices calculated manually in R. General R packages used in the statistical analysis and production of outputs were: "tidyverse", "magrittr", "ggpubr","janitor","taxize","rstatix", "readxl","bookdown","pander","plotrix", "cluster", "clustig", "factoextra", "ggrepel", "dendextend", and "patchwork".

4.1.1. Univariate Statistics

The following species diversity indices were calculated for the benthic grab sample species data:

- Number of Species (S): provides the number of species present in a sample, with no indication of relative abundances;
- Number of individuals (n): provides the total number of individuals counted;
- Species Diversity Shannon-Wiener index (H'): measures the uncertainty in predicting the identity of the next species withdrawn from a sample. Typically between 1.5 and 3.5, a lower value shows lower diversity;
- Species Richness Margalef's index (d): measures the number of species present for a given number of individuals. The higher the index, the greater the diversity;
- Simpson's indexes (1-λ): demonstrate a measure of the probability of choosing two individuals from a sample that are different species. D = 0 (minimum diversity), D = 1.0 (maximum diversity); and
- Pielou's evenness (J'): shows how evenly the individuals in a sample are distributed. J' is a range of zero to one. The less variation in the samples, the higher J' is.

These univariate indices enable the reduction of large datasets into useful metrics, which can be used to accurately describe community structures.

4.1.2. Multivariate Statistics

Multivariate analysis is an effective method for detecting subtle changes in benthic community datasets. Multivariate analyses were undertaken in R on the whole dataset, including individual replicates. Due to the partially skewed nature of the fauna data, and its varying abundances, a square root transformation was applied to normalise the data distribution, reducing dominant effects of highly abundant taxa.

A Bray-Curtis resemblance matrix was applied to the transformed infauna data. Non-Metric Multidimensional Scaling (NMDS) plots were produced to examine the similarity between sampling stations. The similarity profile (SIMPROF) analysis routine was utilised to determine the statistically significant groups (i.e., samples that would naturally group as communities). One-way Analysis of Similarity (ANOSIM) revealed whether there were any statistically significant results and, if significant, the Similarity Percentages (SIMPER) function was used to provide information on the main species driving the groupings, which aids in determining the community structure and biotopes.

4.2. Biotope Assignment

Infauna survey results groupings and characterising species were identified through the SIMPROF, NMDS and SIMPER analyses and these were used in combination with the PSA results and physical characteristics (such as depth and zone) to classify the grab sample station biotopes according to the Marine Habitat Classification for Britain and Ireland (Connor *et al.*, 2004).

DDV samples were assigned habitat classifications based on species present according to the most current classification. Where appropriate, broadscale habitats, Features of Conservation Interest (FOCI) or Habitats Directive, Annex I Habitat were also assigned to each sampling station and still image. Guidance notes provided by JNCC report 546 (Parry, 2015) were used to assist this process.

Infauna (grab) and epibenthic (DDV) biotope classifications were incorporated into an Excel spreadsheet alongside physical characteristics such as depth and PSA, and final benthic habitats assigned to each sampling station. The majority of infauna and epibenthic habitat assignment at a sampling station were consistent or complimentary. At the DDV stations, where no benthic grabs were taken, the DDV classification was ground truthed to geophysical data prior to assigning final biotopes. Classification was supported by use of JNCC comparative tables and guidance (Parry, 2019).

4.3. Benthic Habitat Mapping

For the habitat mapping, the overarching strategy was to combine information from the geophysical data with the benthic sample data using geostatistical processing and spatial statistical analysis. This process used the sample data to 'ground truth' the geophysical data, a strategy which is described in the Mapping European Seabed Habitats (MESH) documentation. The existing geophysical data required processing prior to integration so that the data were spatially coincident, at identical spatial resolutions and in a suitable format for the mathematical analyses.

Bathymetry and backscatter data were collected for the ECC, which are relevant to the benthic environment. These data were incorporated within a Geographic Information System (GIS) and processed to produce derived data sets which were then used to predict benthic habitat variability or complexity within the areas surveyed. Benthic sample data was used initially as training sites to model the distribution of the biological habitat classes found in the ECC.

The ground truth point data were buffered to create a training area of 25m radius around each point and these areas associated with the appropriate habitat category. The integration analysis was performed within the GIS and image processing software and the training areas were used to extract values from each of the geophysical layers that could be associated with the biological habitat classes. These values were used to create a statistical 'signature' for each class with these signatures then applied to the whole geophysical data set.

The machine learning tool 'Random Forest classification' within 'Vision using Generic Algorithms' (VIGRA), was selected to produce the habitat maps as this provided a relatively high accuracy output. Random forest classification is an ensemble algorithm, which creates multiple decision trees from a randomly selected subset of the training areas, and the outputs from each decision tree are then evaluated to determine the final habitat class to be mapped based upon the average value or majority class from all the decision trees generated.

5. Results

The Phase 1 subtidal benthic survey campaign was carried out between 22 September and 14 October 2022. DDV imagery was retrieved from 27 sampling stations along the ECC. Grab samples were recovered at all 58 sampling stations for faunal analysis and sediment PSA and TOC. Sediment grab samples were also recovered at 15 sampling stations for contaminants analysis.

The Phase 2 DDV survey campaign was undertaken over three days on 15 and 16 February, and 21 March 2023. DDV imagery was retrieved from all 47 sampling stations along the ECC.

Sampling station locations are provided (Figure 2.1) and the station coordinates and depths are presented (Appendix A).

5.1. **DDV**

For the Phase 1 survey, a total of 30 imagery samples across 27 sampling stations (as two sampling stations were split into two segments) were collected. Phase 2 returned 43 imagery samples (no videos were segmented) across 43 sampling stations. The results showed the seabed at the majority of sampling stations comprised of sand and mud dominated sediment interspersed with patches of coarser sediment. A number of sampling stations were recorded as the broadscale habitat 'subtidal mud' with some burrows observed (including some complex burrow systems from *Nephrops*). 'Subtidal sand' was typically observed at inshore sampling locations with 'Subtidal Coarse Sediment' observed at five sampling stations towards the north of the site and subtidal Mixed Sediment' observed to the north of the site and at one inshore location. In addition. epifauna was typically sparse throughout the ECC and the most abundant taxa observed were brittle stars (*Ophiuroidea*). Other epifauna included seapens (*Pennatula phosphorea*), fish, (*Pleuronectiformes, Gadidae, Callionymiformes, Triglidae, Melanogrammus aeglefinus, Pleuronectes platessa*), starfish (*Asterias rubens, Asteroidea, Crossaster papposus*), crustacea (*Brachyura, Paguridae, Nephrops norvegicus, Decapoda, Majoidea, Liocarcinus sp., Munida rugosa, Goneplax rhomboides, Cancer pagurus, Pagurus prideau*), anemones (*Actiniaria* and *Adamsia palliata*), tube worms (*Sabellidae, Terrebellidae, Chaetopteridae*), scallops (*Pectinidae, Pecten maximus*) and sea urchins (*Echinus esculentus*). DDV video and stills proformas are provided (Appendix E).

No Invasive Non-Native Species (INNS) were found. Potential Annex I stony reef was found at seven locations. Five in the nearshore area (1, 4, 11, 12 and 14), and two offshore at station 34 in segment 12 and 88 in segment 5 of the ECC. However these two stations were composed of cobbles with relatively low percentage cover and were assessed as 'low' stony reef (Section 5.8). .).

The UK BAP Habitat 'Subtidal sands and Gravels' (SS.SSa.CMuSa, SS.SCS and SS.SCS.CCS biotopes) was recorded at nine offshore stations (5, 9, 80, 82, 83, 89, 96, 102, 104) and 'Mud habitats in Deepwater' (SS.SMu.CSaMu and SS.SMu.CFiMu) was recorded at 38 offshore stations (Table 5.3).

Litter (as defined in Annex 5.1 of the Joint Research Centres Guidance on Monitoring of Marine Litter in European Seas³) was only found during the Phase 2 survey on three separate instances with observations of string-like litter in sampling station 88, loose material or plastic in sampling station 96 and potential litter in sampling station 93.

5.2. Infauna

In total, 4,254 individuals were found within the 58 infaunal samples, representing 273 unique taxa (full species list is provided in Appendix B). The samples containing the highest number of species (56) and individuals (180) were sampling stations 37 and 3, respectively. Where 'species' is referred to, this is in relation to a unique taxon. The top

³ https://mcc.jrc.ec.europa.eu/documents/201702074014.pdf

10 most abundant species found, are presented (Table 5.1). One individual of the bivalve *Arctica islandica* was recorded at each of six stations, namely stations 3, 19, 22, 31,36 and 108. This bivalve tends to be solitary and is a FOCI in England and Priority Marine Feature (PMF) in Scotland. Although *Sabellaria spinulosa* was identified at four stations, abundances were low and not indicative of *Sabellaria* reef. No INNS species were identified from the sampling stations along the ECC.

Species	l otal abundance	Stations
Amphiura filiformis	395	10,100,102,104,108,109,110,17,18,19,20,22,23,24,25,26,27,3,30,32,33 ,36,37,38,41,42,43,44,64,77,79,81,82,83,84,85,86,87,88,89,9,90,91,92, 93,96
Amphiuridae	386	1,10,100,102,104,108,109,110,17,18,19,20,22,23,24,26,27,3,30,32,36, 37,38,39,41,42,43,44,45,64,7,77,79,80,81,82,83,84,85,86,87,90,91,92, 96
Scoloplos armiger	172	100,102,104,108,109,110,22,23,25,27,28,30,31,32,33,36,37,39,41,42,4 3,44,64,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,96
Diplocirrus glaucus	145	10,100,110,18,19,20,22,23,24,25,26,27,28,30,34,36,37,38,39,42,43,44, 45,64,77,79,82,83,85,86,87,90,91,92,93
Paramphinome jeffreysii	144	100,102,20,22,23,25,27,30,31,32,33,34,36,37,39,41,42,43,45,64,7,80,8 4,85,86,87,89,90,96
Spatangoida	142	10,104,17,18,23,25,26,3,30,33,34,36,37,39,41,42,43,44,64,77,79,81,82 ,9,91,92,93,96
Thyasira flexuosa	139	108,110,15,17,18,24,25,26,28,30,34,37,39,42,43,44,45,64,77,79,82,85, 86,87,89,91,92,93
Spiophanes bombyx	137	10,100,102,104,108,109,110,17,18,19,22,23,24,25,28,3,30,37,39,41,64 ,77,79,81,82,83,84,85,86,87,89,9,90,91,92,93,96
Chamelea striatula	127	1,100,108,110,15,17,19,3,30,43,44,64,77,79,82,84,85,87,9,90,96
Lumbrineris cingulata	120	10,102,108,15,16,19,20,22,23,24,25,27,3,33,34,39,43,7,80,84,88,89,93 ,96

Table 5 1:	Ton most	abundant	enocioe	procont	and	sampling	etatione	thoy	Woro	found
	I GII IIIUSI	abunuant	Species	present	anu	Sampling	Stations	LIEY	WCIC	iounu

5.2.1. Diversity

Diversity results are presented (Figure 5.1). The number of taxa ranged from 3 to 56, and the number of individuals ranged from 3 to 180. Richness index values ranged from 1.82 to 10.76. Evenness and diversity values are high and relatively consistent across the ECC. Richness, number of individuals and species number show no discernible pattern relating to location.

Figure 5.1: Univariate diversity indices at subtidal benthic grab sampling stations along the export cable corridor

5.2.2. Community Analysis

SIMPROF found nine statistically significant groups of stations based on relatedness of species composition (Figure 5.2).

Figure 5.2: Station groupings (SIMPROF) revealed through clustering analysis of benthic grab stations

Groupings	Stations
а	106
b	15, 16, 28, 29
С	1, 3, 9
d	32, 33, 34
е	18, 37, 39, 41, 42, 43, 44, 91, 92, 93
f	100, 108, 110, 64, 77, 79, 82, 83, 84, 85, 86, 87, 90
g	102, 104, 109, 81, 89, 96
h	10, 17, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 36, 38, 45
i	7, 80, 88

Table 5.2: Station groupings from SIMPROF analysis of benthic samples

The species driving the groupings in Table 5.2 are provided (Section 5.6, Table 5.4). Stations were grouped by the Folk (1954) classification to determine whether species composition varied between Folk classes. (Figure 5.4). When species assemblages were compared between Folk classifications by ANOSIM (Figure 5.4), a significant result was found (p = 0.002, R = 0.346). This illustrates the importance of sediment type in the resulting species assemblages and overall benthic community.

Figure 5.3: NMDS plot showing clustering of subtidal benthic grab sampling stations based on species composition

Figure 5.4: NMDS plot showing clustering of subtidal benthic grab sampling stations based on species composition, coloured by the Folk (1954) classification of the sediment

5.3. Biomass

Taxa from all stations sampled were separated in the main faunal groupings for biomass measurements to be made. For each benthic grab faunal station, the biomass of each major faunal groups, as a proportion of overall biomass, is shown in Figure 5.5. Near shore stations are dominated by proportions of Mollusca and Annelida (segmented worms). The majority of the stations in the middle of the export cable corridor tend to be dominated by Echinodermata. Moving further offshore stations become dominated by Mollusca. Sampling station 25 had a high proportion of crustacea (21.73g), compared to other locations.

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

Project: Cambois Connect Benthic Baseline
Title: Figure 5.5: Biomass Proportions of Major Faunal Groupings
Key Cable corridor 12 nautical mile (NM) limit England/Scotland territorial boundary Benthic sampling station Final groupings Cnidaria Annelida Crustacea Mollusca Echinoderm Other
© OpenStreetMap contributors Scale @ A3: 1:500,000 Coordinate System: WGS84 UTM Zone 30N Graticules: WGS84
0 5 10 15 20 km
Date: 28-04-23 Prepared by: RB Checked by: ME
Ref: GB200769_M_104_B
Drawing by: The Natural Power Consultants Limited The Green House Forrest Estate, Dalry Castle Douglas, DG7 3XS, UK Tel: +44 (0)1644 430008 Fax: +44 (0)1644 430008 Fax: +44 (0)845 299 1236 Email: sayhello@naturalpower.com www.naturalpower.com

5.4. PSA and TOC

PSA was undertaken on a sample from each sampling station and TOC analysis performed on finer sediments. The survey area consisted mostly of muddy sand with small areas of gravelly muddy sand and muddy sandy gravel (Folk, 1954) with most offshore sampling stations comprising muddy sand. Figures 5.6 to 5.8 demonstrate the sediment type across the survey area. Sampling station 16 and 15 returned the highest TOC values (7.86% and 6.77%, respectively), at least double the next highest values. These locations had a higher content of finer mud fractions, which typically has a higher TOC. The full list of the percentages of each particle size and TOC results is provided in Appendix C.

Figure 5.6: PSA and TOC at subtidal benthic grab sampling stations along the export cable corridor

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

Project:

Cambois Connect Benthic Baseline

Title:

Figure 5.7: PSA Folk Classification

Кеу	
Berwick Bank site boundary	
12 nautical mile (NM) limit	
England/Scotland territorial boundary	
Cable corridor segment IDs	
05	
07	
12	
15	
16	
PSA Folk Classification	
 (Gravelly) muddy sand 	
 (Gravelly) sand 	
 (Gravelly) sandy mud 	
 Gravelly muddy sand 	
 Gravelly sand 	
Muddy sand	
Muddy sandy gravel	
Sand	
 Sandy gravel 	
Sandy mud	
© OpenStreetMap contributors	
Scale @ A3: 1:500,000	
Graticules: WGS84	
0 5 10 15 20 km	
Date: 28-04-23 Prepared by: RB Checked by:	ME
Ref: GB200769_M_105_B	
Drawing by:	
The Green House Forrest Estate, Dalry	
Castle Douglas, DG7 3XS, UK Tel: +44 (0)1644 430008	
Fax: +44 (0)845 299 1236 Email: sayhello@naturalpower.com	

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

Project:					
Cambois Connect Benthic					
Baseline					
Title:					
Figure 5.8: PSA Percentage					
Sediment Types					
Кеу					
Berwick Bank site boundary					
Cable corridor					
12 nautical mile (NM) limit					
England/Scotland territorial boundary					
Benthic sampling station					
Sediment types					
Gravel (%)					
Sand (%)					
Mud (%)					
© OpenStractMan contributors					
Scare (U AS. 1.500,000 Coordinate System: WGS84 UTM Zone 30N N					
Graticules: WGS84 0 5 10 15 20 km					
Date: 28-04-23 Prepared by: RB Checked by: ME					
Ref: GB200769_M_106_B					
Drawing by:					
The Natural Power Consultants Limited The Green House					
Castle Douglas, DG7 3XS, UK Tel: +44 (0)1644 430008					
Fax: +44 (0)845 299 1236 Email: sayhello@naturalpower.com www.naturalpower.com					

5.5. Contaminants

A range of contaminants were assessed against Cefas and Canadian (CCME, 2001) action level guidelines. When metals were assessed against the guidelines, no contaminants were above the Cefas Action Level 2 (AL2), upper limits and those which were above Action Level 1 (AL1) were only marginally so. Levels of cadmium, copper, lead, mercury and zinc all fell well below Cefas AL1 lower limit. Sampling stations 2 and 15 returned values for chromium and nickel slightly above the AL1 threshold but well below AL2. All heavy metals, except chromium were under the Canadian Interim Sediment Quality Guideline (ISQG) / Threshold Effect Level (TEL) levels.

Levels of organotins, Polychlorinated biphenyls (\sum PCB7) were below guidelines assessed and all organotins were all under AL1 levels. Levels of Poly Aromatic Hydrocarbons (\sum PAH16) were all below Cefas AL1. Canadian guidelines do not specify a value for the sum of the 16 PAHs, and as such each PAH was assessed against its own guideline where available. Of the thirteen PAH with individual thresholds, sampling stations 14 and 15 consistently exceeded the ISQG/TEL, with other sampling stations exceeding the ISQG/TEL for different PAHs.

The total Hydrocarbon Content (THC) levels were generally low (below Cefas AL1), however sampling stations 1 and 15 had values which were above Cefas AL1.

A full breakdown of contaminant results can be found in Appendix D.

5.6. Biotope Assignment

5.6.1. **DDV**

All DDV results are provided within this report, incorporating both Phase 1 and Phase 2 surveys

A total of 11 habitats / biotopes were classified from DDV across the ECC; two down to level 5, five to level 4, and four to level 3 (Table 5.3). The most common was 'Circalittoral sandy mud' (SS.SMu.CSaMu). Other biotopes included 'Seapens and burrowing megafauna in circalittoral fine mud'(SS.SMu.CFiMu.SpnMeg), 'Circalittoral muddy sand' (SS.SSa.CMuSa), 'Sublittoral sands and muddy sands' (SS.SSa), and 'Sublittoral cohesive mud and sandy mud communities' (SS.SMu). The biotope 'Seapens and burrowing megafauna in circalittoral fine mud' (SS.SMu.CFiMu.SpnMeg) was recorded at stations where burrows were clearly observed in sufficient density (>0.1m² for burrows over 3cm), the presence of burrowing megafauna (*Nephrops norvegicus*) was observed at six stations and the seapen *Pennatula phosphorea* was observed at 34 locations. Where burrows were observed at lower densities, the sandy mud habitat was recorded as the broader habitat of SS.SMu.CFiMu), depending on silt and sand content. The substrates observed were largely homogeneous in nature, however segmentation was required at sampling stations 1 and 14 due to the presence of a change in habitat from soft sediments to soft rock communities. The DDV sample station images and stills, along with the DDV analysis proformas are provided (Appendix E).

Table 5.3: biotopoes ident during analysis imageryBiotope	Subtidal ified of video	MNCR classification description	EUNIS (2022) equivalent	Stations
SS.SMu		Sublittoral cohesive mud and sandy mud communities	A5.3	29
SS.SMu.CFiMu		Circalittoral fine mud	A5.36	30, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 79, 85, 86, 87

Table 5.3:Subtidalbiotopoes identifiedduring analysis of videoimageryBiotope	MNCR classification description	EUNIS (2022) equivalent	Stations
SS.SMu.CFiMu.SpnMeg	Seapens and burrowing megafauna in circalittoral fine mud	A5.361	2, 6, 7, 15, 16, 27, 28, 38 ,45
SS.SMu.CSaMu	Circalittoral sandy mud	MC6	10, 17, 18, 19, 20, 22, 23, 24, 25, 26, 41, 64, 77, 81, 90, 91, 92, 93, 100, 108, 109, 110
SS. SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	A5.1	80, 96, 104
SS.SCS.CCS	Circalittoral coarse sediment	A5.14	89, 102
SS.SSa	Sublittoral sands and muddy sands	A5.2	1, 3, 8
SS.SSa.CMuSa	Circalittoral muddy sand	A5.26	5, 9, 82, 83
CR.MCR	Soft rock communities	A4.23	1, 11, 12, 14
CR.MCR.EcCr.FaAlCr.Flu	<i>Flustra foliacea</i> on slightly scoured silty circalittoral rock	A4.2141	4
SS.SMx.CMx	Circalittoral mixed sediment.	A5.44	13, 21, 34, 84, 88, 106

5.6.2. Benthic Grabs

SIMPER analysis was run to determine species contributing greatest variation between Folk classifications and the five top contributors to the SIMPROF station groupings (Table 5.4).

Table 5.4:
 Average contributions of species most similar between station groupings, based on SIMPER analysis

Station grouping	Most influential species driving similarity	Folk sediment classification	Approximate depth range (m)
а	Cochlodesma praetenue	Gravelly muddy Sand	60m
	Ennucula tenuis		
	Euspira nitida		
b	Ophelina acuminata,	Muddy sand	27m – 93m
	Abra nitida,	Gravelly sandy mud	
	Thyasira flexuosa		
	Lumbrineris cingulata,		
	Harpinia antennaria,		
С	Chamelea striatula,	Sand	8m – 18m
	Fabulina fabula,	Gravelly sand	
	Amphiuridae		

Station grouping	Most influential species driving similarity	Folk sediment classification	Approximate depth range (m)
	Abra prismatica,		
	Nucula nitidosa,		
d	Paramphinome jeffreysii,	Muddy sandy gravel	82m – 90m
	Lumbrineris cingulata,		
	Ampharete lindstroemi,		
	Notomastus,		
	Leptochiton asellus		
е	Spatangoida,	Muddy sand	53m – 90m
	Amphiuridae,		
	Thyasira flexuosa,		
	Paramphinome jeffreysii,		
	Amphiura filiformis		
f	Amphiura filiformis,	Muddy sand with some	58m – 74m
	Amphiuridae,	gravel	
	Scoloplos armiger,		
	Spiophanes bombyx		
	Thy		
g	Amphiura filiformis,	Sand	54m – 70m
	Amphiuridae,	Gravelly muddy sand	
	Scoloplos armiger,	Muddy sandy gravel	
	Paramphinome jeffreysii,	Sandy gravel	
	Spiophanes bombyx,		
h	Amphiuridae,	Muddy sand with some	45m – 100m
	Diplocirrus glaucus,	gravel	
	Amphiura filiformis,		
	Lumbrineris cingulata,		
	Terebellides		
i	Lumbrineris cingulata,	Gravelly muddy sand	47m – 64m
	Hemilepton nitidum	Muddy sandy gravel	
	Spiophanes kroyeri,		
	Peresiella clymenoides		
	Glycera alba		

Depth varies throughout the ECC from the infralittoral habitats closer to shore and offshore circalittoral habitats closer to the Array Area. Whilst depth and sediment types vary across the sediment groupings, there is considerable overlap between groupings in terms of fauna with *Amphiura filiformis, Amphiuridae* and *Paramphinome jeffreysii* characterising species for several groupings. This suggests that a complex of similar and/or transitional biotopes are present within the ECC. Infauna (grab) characterising species were incorporated into an Excel spreadsheet alongside epibenthic (DDV) biotope classifications (where available), physical characteristics such as depth and sediment characteristics, and final benthic habitats assigned to each sampling station. Biotopes assigned from video are not necessarily always reflective of the final biotope once other defining parameters such a PSA and infauna are

taken into consideration, since imagery only accounts for epifaunal species. At stations where DDV imagery was collected but no benthic grab could be taken (2, 4, 5, 6, 8,11, 12, 13, 14, 21, 35 and 40), the DDV biotope assigned was compared against the geophysical data to determine sediment type (as no PSA data is available) and any other locally assigned biotopes. Where there was a mismatch, a final biotope was determined based upon the DDV results and geophysical data combined providing a fuller representation of the habitat.

5.6.3. Final biotopes

A total of thirteen biotopes were classified across the ECC, one down to level 3, six down to level 4 and six down to level 5. The most common biotope found was '*Paramphinome jeffreysii, Thyasira* spp. and *Amphiura filiformis* in offshore circalittoral sandy mud' (SS.SMu.OMu.PjefThyAfil) found at 26 sampling stations. Where a suitable fit was not possible or did not seem typical of the results, a conservative approach was adopted, and a higher level biotope was assigned. These included 'Offshore circalittoral mixed sediment' (SS.SMx.OMx), 'Circalittoral mixed sediment' (SS.SMx.CMx), , 'Circalittoral sandy mud' (SS.SMu.CSaMu), 'Offshore circalittoral mud '(SS.SMu.OMu), 'Infralittoral muddy sands' (SS.SSa.IMuSa) and 'Offshore circalittoral coarse sediment' (SS.SCS.OCS) '. In addition, one location (sampling station 1) was classified a mosaic of rock (CR.MCR) interspersed with soft sediment (SS.SSa.IMuSa.FfabMag). All biotopes are provided (Table 5.5) and full biotope descriptions in Appendix F.

Final Biotope	MNCR classification description	EUNIS (2022) equivalent	Stations
SS.SMx.OMx	Offshore circalittoral mixed sediment	MD4	33, 34, 106, 109
SS.SMx.CMx	Circalittoral mixed sediment	MC4	7, 13, 21, 88
SS.SMx.CMx.KurThyMx	<i>Kurtiella bidentata</i> and <i>Thyasira</i> spp. in circalittoral muddy mixed sediment	MC4213	85
SS.SSa.CFiSa.ApriBatPo	<i>Abra prismatica, Bathyporeia elegans</i> and polychaetes in circalittoral fine sand	A5.252	64, 77, 79, 81, 82, 83, 84, 86, 87, 90, 100, 108, 110,
SS.SSa.OSa.OfusAfil	<i>Owenia fusiformis</i> and <i>Amphiura filiformis</i> in offshore circalittoral sand or muddy sand	A5.272	80
SS.SMu.CSaMu	Circalittoral sandy mud	A5.35	2, 6
SS.SMu.CSaMu.ThyEten	<i>Thyasira</i> spp. and <i>Ennucula tenuis</i> in circalittoral sandy mud	A5.352	15, 16, 28, 29
SS.SMu.OMu	Offshore circalittoral mud	MD6	35, 40
SS.SMu.OMu.PjefThyAfil	<i>Paramphinome jeffreysii, Thyasira</i> spp. and <i>Amphiura filiformis</i> in offshore circalittoral sandy mud	A5.376	10, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 32, 36, 37, 38, 39, 41, 42, 43, 44, 45, 91, 92, 93
SS.SSa.IMuSa	Infralittoral muddy sand	A5.24	5, 8
SS.SSa.IMuSa.FfabMag	Fabulina fabula and Magelona mirabilis with venerid bivalves and amphipods in infralittoral compacted fine muddy sand	MB5236	3, 9

Table 5.5:	Final subtidal	biotopes	found within	the ex	port cable	corridor
1 4010 0.0.	i mai subtidai	piotopes			portouble	oomuon

Final Biotope	MNCR classification description	EUNIS (2022) equivalent	Stations
SS.SCS.OCS	Offshore circalittoral coarse sediment	MD3	89, 96, 102, 104
CR.MCR	Soft rock communities	A4.2	4, 11, 12, 14
CR.MCR	Mosaic of		1
SS.SSA.IMUSA.FIADMAg	Moderate energy circalittoral rock		
	And		
	Fabulina fabula and Magelona		
	mirabilis with venerid bivalves and		
	amphipods in infralittoral compacted		
	fine muddy sand		

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

Project:

Cambois Connect Benthic Baseline

Title:

Figure 5.9: Benthic Biotope Classification

Key					
	Berwick Bank site boundary				
I—	—— 12 nautical mile (NM) limit				
	 England/Scotland territorial boundary 				
Cable	Cable corridor segment IDs				
	05				
] 07				
	12				
	15				
] 16				
Benthic biotope classification					
• CR.MCR					
CR.MCR/SS.SSa.IMuSa.FfabMag					
SS.SCS.OCS					
SS.SMu.CSaMu					
SS.SMu.CSaMu.ThyEten					
•	SS.SMu.OMu				
SS.SMu.OMu.PjefThyAfil					
SS.SMx.CMx					
•	SS.SMx.CMx.KurThyMx				
SS.SMx.OMx					
SS.SSa.CFiSa.ApriBatPo					
•	SS.SSa.IMuSa				
•	SS.SSa.IMuSa.FfabMag				
•	SS.SSa.OSa.OfusAfil				
© OpenStreetMap contributors					
Scale @ A3: 1:500,000					
Graticu	Iles: WGS84				
	5 10 15 20 km				
Date:	15-05-23 Prepared by: RB Checked by: ME				
Ref: GB200769_M_107_C					
Drawing by: The Natural Power Consultants Limited The Green House Forrest Estate, Dalry Castle Douglas, DG7 3XS, UK Tei: +44 (0)1644 430008 Fax: +44 (0)845 299 1236 Email: sayhello@naturalpower.com www.naturalpower.com					

5.7. Benthic Habitat Mapping

The predicted habitats for the ECC show the inshore areas are dominated by the biotope Sublittoral sands and muddy sands (SS.SSa) closest to shore, with some further refined to Circalittoral muddy sand (SS.SSa.CMuSa), typically characterised by a wide variety of polychaetes and bivalves, supporting a rich infaunal community. There are discrete patches of rock present, assigned as stony (1, 11 and 14) and bedrock (4 and 12) reef. Within 12 nautical miles, DDV analysis of stations 2, 6, 7, 14, 15, 16, 27, 28, 38 and 45, initially suggested an epifaunal component was present indicating the OSPAR habitat of 'Sea pen and burrowing megafauna community' (SS.Smu.CfiMu.SpnMeg). However, PSA data showed none of these stations consisted of fine muds, and on assessment of the infauna data, no stations were assigned the SS.Smu.CfiMu.SpnMeg biotope (Table 5.6).

Muddier habitats, with the biotope of '*Paramphinome jeffreysii*, *Thyasira* spp. and *Amphiura filiformis* in offshore circalittoral sandy mud' (SS.SMu.OMu.PjefThyAfil), dominate the cable corridor moving offshore until the bifurcation in the route along with patches of sandy habitats (SS.SSa.IMUSa) and mixed substrate habitats (SS.SMx.CMx) closer inshore.

Where the export cable corridor is orientated diagonally to the northeast further offshore, bands of mixed sediment habitats and small patches of coarse or sandy habitats occur between areas of mud, with the biotope of *'Paramphinome jeffreysii, Thyasira* spp. and *Amphiura filiformis* in offshore circalittoral sandy mud' (SS.SMu.OMu.PjefThyAfil) dominating the cable corridor as it moves offshore and is orientated north until the bifurcation in the route.Where the cable corridor diverges into two sections the seabed habitats become dominated by sandy substrate and the biotope of *'Abra prismatica, Bathyporeia elegans* and polychaetes in circalittoral fine sand' (SS.SSa.CFiSa.ApriBatPo) is common, particularly along the western route. This is interspersed with areas of Offshore circalittoral coarse sediment (SS.SCS.OCS) and Offshore circalittoral mixed sediment (SS.SMx.OMx) and to a lesser extent offshore mud habitats of with the polychaete, bivalve and brittle star community of SS.SMu.OMu.PjefThyAfil.

Final Biotopes Assigned				
SS.SMx.OMx	SS.SMu.CSaMu	SS.SSa.IMuSa.FfabMag		
SS.SMx.CMx	SS.SMu.CSaMu.ThyEten	SS.SCS.OCS		
SS.SMx.CMx.KurThyMx	SS.SMu.OMu	CR.MCR		
SS.SSa.CFiSa.ApriBatPo	SS.SMu.OMu.PjefThyAfil			
SS.SSa.OSa.OfusAfil	SS.SSa.IMuSa			

Table 5.6: Final biotopes incorporated into the habitat mapping

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no responsibility for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against. The Natural Power Consultants Limited in respect of its contents.

36'N

55

contents. Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated in . 1. this plan should be used for identification purposes only, unless otherwise stated in .

Notes: a) Information on this plan is directly reproduced from digital and other material from different sources. Minor discrepancies may therefore occur. Where further clarification is considered necessary, this is noted through the use of text boxes on the plan itself. b) For the avoidance of doubt and unless otherwise stated: 1. this plan should be used for identification purposes only, unless otherwise stated in accompanying documentation. 2. The Natural Power Consultants Limited accepts no liability for the accuracy of data supplied by third parties. 3. The Natural Power Consultants Limited accepts no liability for any use which is made of this plan by a party other than its client. No third party who gains access to this plan shall have any claim against The Natural Power Consultants Limited in respect of its contents.

Project: Cambois Connect Benthic Baseline
Title: Figure 5.10: Benthic Characterisation Habitat Map (Page 4 of 4 - Cable Corridor Segments 15 and 16)
Key Cable corridor 12 nautical mile (NM) limit MNCR sample point CR.MCR SS.SMu.CSaMu, S.SMu.CSaMu.ThyEten, SS.SMu.OMu.PjefThyAfil SS.SMu.OMu, SS.SMu.OMu.PjefThyAfil SS.SSa.IMuSa, SS.SSa.IMuSa.FfabMag SS.SMx.OMx, SS.SMx.CMx.KurThyMx, SS.SMx.OMx MNCR benthic habitats CR.MCR SS.SNu SS.SNu SS.SNu SS.SNu SS.SNu SS.SNu SS.SNu SS.SSa Annex I Habitat Stony Reef (Annex I) Stony reef (Low) (Annex I) Stony reef (Low) (Annex I) V GenestreetMap contributors
Scale @ A3: 1:100,000 Coordinate System: WGS84 UTM zone 30N Graticules: WGS84 0 1 2 3 4 km L L L L L L
Date: 02-06-23 Prepared by: JO Checked by: ME
Ref: GB200769_M_108_B
Drawing by: The Natural Power Consultants Limited The Green House Forrest Estate, Dairy Castle Douglas, DG7 3XS, UK Tel: +44 (0)1644 430008 Fax: +44 (0)1644 430008 Fax: +44 (0)1644 430008 Email: sayhello@naturalpower.com www.naturalpower.com

5.8. Species and Habitats of Conservation Importance

A number of designated sites exist in the vicinity of the work. In Scottish waters, the ECC passes through the Firth of Forth Banks Complex Nature Conservation Marine Protected Area (MPA). The ECC runs alongside the Farnes East MCZ (to the west) and the nearshore section passes through Coquet to St Mary's MCZ on route to landfall.

During Phase 1 and Phase 2 surveying, a number of habitats and species of importance were identified. *Sabellaria spinulosa* was found as individual specimens at one location (88) but not in the reef aggregation form. Annex I stony reef was identified in one segment of the video capture for sampling station 1 but the other segment contained 'Sublittoral sands and muddy sands' (SS.SSa) and the overall biotope for the station was SS.SSa.IMuSa.FfabMag. Moderate energy circalittoral rock (CR.MCR) was identified at stations 1, 4, 11, 12, 14, 34 and 8. The imagery was assessed for the presence of Annex I Reefs, using the current guidance (Irving 2009, Godling *et al*, 2020). When determining whether an area of the seabed should be considered as Annex I stony reef, four characteristics (composition, elevation, extent, or biota) were scored to meet the criteria required to be considered as contributing to the Marine Natura site network of qualifying reefs in terms of the EU Habitats Directive. Following this assessment, stations 4 and 12 were classified as bedrock reef, stations 1, 11 and 14 as rocky reef. Stations 34 and 88 composed of pebbles and cobbles with relatively low percentage cover and were therefore assessed as 'low' stony reef (Figure 5.10). Species assemblages were typical of Annex I reef, with a faunal turf covering and included characterising species such as anemones, Bryozoans, crabs, squat lobsters, *Alcyonium digitatum*, starfish, brittle stars and hermit crabs.

Final habitat mapping characterised a number of UK BAP habitats including 'Subtidal sands and Gravels' (SS.SSa.CFiSa.ApriBatPo, SS.SSa.OSa.OfusAfil) which were recorded at 14 stations (64, 77, 79, 80, 81, 82, 83, 84, 86, 87, 90, 96, 100, 108 and 110). A number of sampling stations were recorded from visual imagery analysis as 'Seapen and burrowing megafauna communities' which are also considered to be 'mud habitats in deep water', and the OSPAR habitat and PMF Seapen and burrowing megafauna communities'. However, although burrows were present at some of the stations, only one seapen species, *Pennatula phosphorea,* was identified through the DDV imagery analysis, and when assessed alongside the sediment data (or geophysical data if no grab undertaken) and infaunal data, no locations were classified as Seapen and burrowing megafauna communities' due to sediment being coarser than visualised.

The bivalve species *Arctica islandica,* was recorded in the infaunal samples collected at six stations. This species is a FOCI in England and a PMF in Scotland. It is a long-lived, slow-growing bivalve that takes between c. 5 and c. 15 years to reach maturity depending on location. Furthermore, fourteen stations within Scottish waters were characterised by a PMF biotope: SS.SSa.CFiSa.ApriBatPo and SS.SSa.OSa.OfusAfil (offshore subtidal sands and muds).

6. Conclusion

The subtidal benthic ecology depicts a relatively heterogenous environment with 13 biotopes classified across the ECC. The sediments consist mainly of muddy Sand and sandy Mud with varying degrees of gravel, some areas of mixed and coarse sediments, and small areas of circalittoral rock closer to shore. The community structure is typical of most North Sea communities, comprising of a range of characterising species including polychaetes, bivalves, amphipods, hydroids and bryozoans. The nearshore area is dominated by molluscs and annelids, whilst further offshore more echinoderms are present within samples.

A number of biotopes were identified, typical of biotopes commonly found in the North Sea, and complimentary to those already recorded off the Northumberland coastline (e.g. Blyth Offshore Wind Farm Annual Monitoring Reports⁴). Inshore muddier habitats, with the biotope of *'Paramphinome jeffreysii, Thyasira* spp. and *Amphiura filiformis* in offshore circalittoral sandy mud' (SS.SMu.OMu.PjefThyAfil), dominate the cable corridor. This graduates to muddy sand habitats along the cable corridor with areas of mixed sediment habitats and coarse sediment habitats in between. There is a clear biotope shift from SS.SMx.CMx to SS.SSa.CFiSa.ApriBatPo as the sediment changes from mixed sediment to finer sand, closer to the array arrea. These biotopes are interspersed with other biotopes common in highly dynamic areas and are common of the mosaic pattern typically observed offshore. A number of stations were identified as higher level biotopes (CR.MCR, SS.SMx.OMx, SS.SMx.CMx, SS.SMu.CMx, SS.SMu.CMu, SS.SMu.OMu, SS.SSa.IMuSa, and SS.SCS.OCS).

The most abundant biotope in the ECC area was SS.SMu.OMu.PjefThyAfil (*Paramphinome jeffreysii, Thyasira* spp. and *Amphiura filiformis* in offshore circalittoral sandy mud). In areas of the North Sea, such as the Swallow Sand MCZ, this biotope has been observed in sediments with a coarse material component. This biotope along with SS.SMu.CSaMu.ThyEten, SS.SMuCSaMu.AfilKurAnit, SS.SMu.CSaMu.AfilEten and SS.SSa.OSa.OfusAfil, may comprise the *Amphiura* dominated components of the 'off-shore muddy sand association' (Jones 1951; Mackie 1990) and the infralittoral etage described by Glemarec (1973) and may exist in a transitional environment with SS.SSa.OSa.OfusAfil.

Annex I features (stony reef) were identified at seven locations. Whilst the reef forming species *Sabellaria spinulosa* was found at a single location along the ECC in low abundance, there was no evidence of biogenic reef. A number of BAP habitats, which are also categorised as PMF in Scottish waters are present. No INNS species were identified during the benthic survey campaign.

Contaminated sediment results showed low levels of chemical contaminants at stations sampled within the ECC. The majority of contaminant levels at sampled stations were below Cefas AL1 and Canadian Interim Sediment Quality Guidelines. THC levels were above Cefas AL1 at two locations. These locations are relatively close to shore in an area which has a high shipping use associated with the nearby Port of Blyth.

References

Buchanan, J.B. (1984). Sediment Analysis. In: N.A.Holme & A.D. McIntyre (Eds.) *Methods for the Study of Marine Benthos*. Blackwell Scientific Publications, Oxford. 41-65pp

Cefas OneBenthic Data Extraction tool : https://rconnect.cefas.co.uk/onebenthic_dataextractiongrabcore/

Cefas 2009. CSEMP Green Book – Appendices Version 14, 36pp. 0 Appendix 3, Procedural guidelines for subtidal sediment sampling. www.cefas.co.uk/publications/scientific-series/green-book.aspx.

Coggan, R., Populus, J., White, J., Sheehan, K., Fitzpatrick, F., & Piel, S. (eds.) (2007). Review of Standards and Protocols for Seabed Habitat Mapping. MESH.

CMME (2001). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. https://www.pla.co.uk/Environment/Canadian-Sediment-Quality-Guidelines-for-the-Protection-of-Aquatic-Life

Conner, D.W., Allen, J.H, Golding, N., Howell, K.L., Lieberknecht, L.M., Northern, K.O. & Reker, J.B. (2004). *The Marine Habitat Classification for Britain and Ireland Version 04.05*. JNCC, Peterborough - <u>www.jncc.gov.uk/MarineHabitatClassification</u>

Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull., C., Vincent, M., (2001). *Marine Monitoring Handbook*. JNCC. <u>http://jncc.defra.gov.uk/MarineMonitoringHandbook</u>

Folk, R.L. (1954) The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. The Journal of Geology, 62, 344-359.

Golding, N., Albrecht, J. & McBreen, F. (2020). *Refining criteria for defining areas with a 'low resemblance' to Annex I stony reef: Workshop Report.* JNCC Report No. 656, JNCC, Peterborough.

Gubbay, S. (2007). Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency workshop 1-2 May, 2007.JNCC Report No. 405.

Hitchin, R., Turner, J.A. & Verling, E. (2015). Epibiota remote monitoring from digital imagery: Operational guidelines.

Holt, R. & Sanderson, B. (2001) *Procedural Guideline No. 3-5 Identifying biotopes using video recordings*. In: Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C., Vincent, M. (eds). Marine Monitoring Handbook. JNCC, Peterborough.

Irving, R. (2009). *The identification of the main characteristics of stony reef habitats under the Habitats Directive*. JNCC Report No. 432, JNCC, Peterborough.

JNCC (2018). Remotely Operated Vehicles for use in marine benthic monitoring. Marine Monitoring Platform Guidelines No. 1. JNCC, Peterborough.

Limpenny, D.S., Foster-Smith, R.L., Edwards, T.M., Hendrick, V.J., Diesing, M., Eggleton, J.D., Meadows, W.J., Crutchfield, Z., Pfiefer, S. & Reach, I.S. (2010). *Best methods for identifying and evaluating Sabellaria spinulosa and cobble reef.* Aggregate Levy Sustainability Fund Project MAL0008. Joint Nature Conservation Committee, Peterborough, 134 pp.

OSPAR (2014). JAMP Guidelines for Monitoring of Contaminants in Biota and in Sediments.

Parry, M.E.V., Howell, K.L., Narayanaswamy, B.E., Bett, B.J., Jones, D.O.B., Hughes, D.J., Piechaud, N., Nickell, T.D., Ellwood, H.N., Askew, N., Jenkins, C. & Manca, E. (2015). *A Deep-sea Section for the Marine Habitat Classification of Britain and Ireland (v15.03)*. JNCC Report No. 530. JNCC, Peterborough.

Worsfold, T.M., Hall, D.J. & O'Reilly, M. (Eds.) (2010). *Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol: Version 1.0*, June 2010. Report to the NMBAQC Committee. Unicomarine Report NMBAQCM PRP. 33pp.

Appendices

A. Sample Locations

Table 1: Phase	1	and	2	Subtidal	Sampling	Locations
----------------	---	-----	---	----------	----------	-----------

					Contaminated
Station	Depth	Latitude	Longitude	Sample type	Sediment (Y/N)
1	8	55.1620	-1.5000	Grab & DDV	Y
2	44	55.17182	-1.43996	DDV	Y
3	18	55.1620	-1.4750	Grab & DDV	Y
4	16	55.1654	-1.4665	DDV	Ν
5	28	55.1621	-1.4686	DDV	Ν
6	48	55.17121	-1.40846	DDV	Y
7	47	55.1780	-1.3890	Grab & DDV	Ν
8	18	55.16107	-1.48766	DDV	Y
9	12	55.1550	-1.4950	Grab & DDV	Y
10	45	55.1830	-1.3780	Grab & DDV	Ν
11	35	55.1680	-1.4542	DDV	Ν
12	25	55.1616	-1.4585	DDV	Ν
13	50	55.17712	-1.40646	DDV	Y
14	33	55.1674	-1.4608	DDV	Ν
15	27	55.1650	-1.4500	Grab & DDV	Y
16	37	55.1650	-1.4410	Grab & DDV	Ν
17	53	55.1820	-1.3660	Grab & DDV	Ν
18	53	55.1900	-1.3570	Grab & DDV	Ν
19	51	55.2030	-1.3510	Grab & DDV	Y
20	51	55.2160	-1.3370	Grab & DDV	Ν
21	51	55.2375	-1.3205	DDV	Ν
22	55	55.2570	-1.3090	Grab & DDV	Y
23	60	55.2780	-1.2910	Grab & DDV	Y
24	60	55.3030	-1.2710	Grab & DDV	Ν
25	65	55.3450	-1.2430	Grab & DDV	Y
26	72	55.3670	-1.2210	Grab & DDV	Y
27	64	55.3240	-1.2540	Grab & DDV	Ν
28	75	55.3830	-1.2030	Grab & DDV	Ν
29	93	55.4710	-1.1030	Grab & DDV	Ν
30	96	55.5390	-1.0290	Grab & DDV	Y
31	100	55.5570	-1.0080	Grab & DDV	Ν
32	90	55.5760	-0.9870	Grab & DDV	Ν
33	82	55.6100	-0.9910	Grab & DDV	Ν

					Contaminated
Station	Depth	Latitude	Longitude	Sample type	Sediment (Y/N)
34	88	55.6410	-0.9990	Grab & DDV	Ν
35	89	55.66743	-0.99755	DDV	Ν
36	95	55.5110	-1.0620	Grab & DDV	Ν
37	85	55.7000	-1.0020	Grab & DDV	Ν
38	85	55.4400	-1.1350	Grab & DDV	Ν
39	90	55.7280	-1.0000	Grab & DDV	Ν
40	86	55.75025	-1.00847	DDV	Ν
41	77	55.7780	-1.0120	Grab & DDV	Ν
42	82	55.8050	-1.0070	Grab & DDV	Ν
43	84	55.8290	-1.0110	Grab & DDV	Ν
44	87	55.8490	-1.0180	Grab & DDV	Ν
45	80	55.4120	-1.1730	Grab & DDV	Ν
64	65	55.9460	-1.0820	Grab & DDV	Ν
77	67	56.1340	-1.5700	Grab & DDV	Ν
79	70	56.0920	-1.4820	Grab & DDV	Ν
80	62	56.0710	-1.4390	Grab & DDV	Ν
81	59	55.9830	-1.1170	Grab & DDV	Ν
82	66	56.0450	-1.3970	Grab & DDV	Ν
83	60	56.0220	-1.3460	Grab & DDV	Ν
84	58	55.9990	-1.3030	Grab & DDV	Ν
85	64	55.9860	-1.2670	Grab & DDV	Ν
86	70	55.9710	-1.2350	Grab & DDV	Ν
87	74	55.9490	-1.2030	Grab & DDV	Ν
88	64	55.9380	-1.1660	Grab & DDV	Ν
89	64	55.9130	-1.1240	Grab & DDV	Ν
90	65	55.9250	-1.0710	Grab & DDV	Ν
91	72	55.8940	-1.0870	Grab & DDV	Ν
92	73	55.8770	-1.0490	Grab & DDV	Ν
93	80	55.8650	-1.0240	Grab & DDV	Ν
96	58	56.0040	-1.1300	Grab & DDV	Ν
100	62	55.9630	-1.1000	Grab & DDV	Ν
102	55	56.0310	-1.1530	Grab & DDV	Ν
104	54	56.0610	-1.1730	Grab & DDV	Ν
106	60	56.0970	-1.2030	Grab & DDV	Ν
108	60	56.1380	-1.2390	Grab & DDV	Ν
109	70	55.8880	-1.0410	Grab & DDV	Ν
110	72	55.9060	-1.0530	Grab & DDV	Ν

Applie 10 11380 11592 11593 11594 117535 117793 117783 117860 117890 117891 117861 117861 117862 117833 117863 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 117864 11797 118077 118071 118071 118072 118071 118072 118071 118072 118071 118072 118072 118072 1180
3 7 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 3 0 0 0 </td
31 4 0 0
<pre></pre>
S700
101 102 1 0 1 0 0 0 <

Thelepus cincinnatus Chone fauveli
Sabella pavonina Hydroides norvegica
Nymphon brevirostre Nymphon grossipes
Verruca stroemia Herpyllobiidae
Myodocopida Apherusa bispinosa
Westwoodilla caecula Leucothoe lilljeborgi
Urothoe elegans
Paraphoxus oculatus Acidostoma neglectum
Acidostoma obesum Hinnomedon denticulatus
Tryphosites longipes Niciope tumida
Nototropis falcatus Nototropis vedlomensis
Ampelisca brevicornis Ampelisca diadema
Ampelisca tenuicornis Ampelisca typica
Bathyporeia elegans Bathyporeia guilliamsoniana
Bathyporeia tenuipes Cheirocratus
Megamphopus cornutus Gammaropsis maculata
Protomedeia fasciata Medicorophium affino
Centraloecetes kroyeranus Pariambus tynicus
Phtisica marina Astacilla
Tanaopsis graciloides Tanaissus lillieborgi
Iphinoe trispinosa Eudorella truncatula
Leucon (Leucon) nasica Petalosarsia declivis
Pseudocuma (Pseudocuma) simile Diastylis
Diastylis bradyi Diastylis laevis
Diastylis lucifera Diastyloides biplicata
Decapoda Nephrops norvegicus
Paguridae Anapagurus laevis
Galathea intermedia Atelecyclus rotundatus
Pilumnus hirtellus Chaetoderma nitidulum
Leptochiton asellus Gastropoda
Turritellinella tricarinata Euspira fusca
Euspira nitida Epitonium trevelyanum
Acteon tornatilis Cylichna cylindracea
Philine Hermania scabra
Armina loveni Antalis entalis
Nucula nitidosa Ennucula tenuis
Anomiidae Lucinoma borealis
Thyasira biplicata Thyasira flexuosa
Hemilepton nitidum Tellimya tenella
Devonia perrieri Tellimya ferruginosa
Kurtiella bidentata Acanthocardia
Papillicardium minimum Spisula subtruncata
Ensis Phaxas pellucidus
Gari fervensis Abra alba
Abra aitida Abra nitida Abra nrismatica
Arctica islandica Chamelea striatula
Timoclea ovata Dosinia
Dosinia lupinus Mysia undata
Varicorbula gibba Hiatella arctica
Thracia convexa Thracia phaseolina
Thracia villosiuscula Cochlodesma praetenue
Cuspidaria cuspidata Alcyonidium parasiticum
Scruparia chelata Flustra foliacea
Callopora dumerilii Alderina imbellis
Crisularia plumosa Scrupocellaria scruposa
Cellaria Escharella immersa
Phoronis Asteroidea
Astropecten irregularis Amphiuridae
Acrocnida brachiata Amphiura chiajei
Amphiura tiliformis Amphipholis squamata
Ophiuridae Ophiocten affinis Ophiura ophiura
Echinocyamus pusillus Spatangoida
Echinocardium cordatum Echinocardium flavescens
Brissopsis lyrifera Paraleptopentacta elongata
Leptosynapta Labidoplax buskii
Enteropneusta

15	131543 130889	0	0 0 0 0	0	0 0 0 0	0	0 0 0 0	0	0 0	0 0 0 2	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
3	130967 131009	0	0 0	0	0 0	0	0 0	0	0	0 0	1	0	0	0 1	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
ie i	134688 106257	0	0 0 0 0	0	0 0	0	0 0	0	0	0 0	0	1	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0		0	0	0	0 0	0	0	0
	128574 2104	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
ıla	102160 102932	0	0 0 0	0	0 0 1 0	0	0 0	0	0	0 0 0 0	0	0	0	0 2 0 0	0	0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 1 0	0	0	0	0 0 0 0	0	0	0
i	102462 103166	0	0 0 0 0	0	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	1 0 0 1	0	0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
	103228 102960	0	0 0 2 0	0	0 0	0	0 0	0	0	0 0 2	5	0	0	0 0	2	0	3	1		0	0 0 5 4	0	0 0	0 0	0	3 0	0 0	0	0	0	0 0	0	0	0
s :um	102986	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0		0	0 0		0	0	1 0		0	0	0
ulatus s	102437	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 1	0	0	0
	102944 102139	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	1 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
ensis nis	179538 101891	0	0 0 0 0	0 2	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 1 0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 1 0	0 3	0	0	0 0 0 0	0	0	0
nis	101896 101930	0	0 0	0	0 0 4 3	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0) 2 1 1	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
5	101933 103058	0	0 0	0	0 0	0	0 1	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	2	0 0	0	1	0
es	103076	0	2 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0		1	0	0		0	0	0
nutus Ilata	102377	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0 0 0	0	0 0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
ta	102383 102443	0	0 0	0	0 0	0	0 0	0	2	0 0	0	0	0 1	0 0 0	0	0	0	0	L 0 D 0	0	0 0 0 2	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	2	0	0
ine /eranus	423507 1059646	0	0 0 5 0	0	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	1 0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
	101857 101864	0	1 0 0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0 0 0	0	0	0
25	118445 136458	0	0 0	0	0 0	0	0 0	0	1	1 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
	136486	5	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	1 0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
sica	110535	0	0 0	0	0 0	0	0 0	0	0	0 0	0	1	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0		0	0	0		0	0	0
documa) simile	110628 110398	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	1	0	0
	110472 110481	0	0 0 1 0	4 0	0 0 4 2	0	0 0 0	0	0	0 0 1 0	0	0	0	0 0 0 0	0	0	0	0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0 0 1	0	0	0	0 0 0 0	0	0	0
a	110483 110494	0	0 0 0 0	0	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 0 0	1	0	L 0 L 0	0	1 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
15	1130 107254	0	0 0	0	0 0	0	0 0	0	0	0 0	0	1	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
	106738	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
a	107232	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 1		0	0 0	0	0 0		0	0 0		0	0	0	0 0	0	0	0
ilum	107213	0	0 1	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
	140199 101	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	5 0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
nata	1381415 140529	0	0 0 0 0	0	0 0 0 0	0	0 2 0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 1 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
num	151894 139736	0	0 0 0 0	0	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
3	138691 139476	0	0 0	0	0 0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	1 1	0	0 0	0 0	0	0 0	0 0	0	0	2	0 0	0	0	0
	138339 867492	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	1	0	0	0	0 0 4 2	2	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
	138804	0	0 0	0	0 0	0	0 0	0	1	0 0	0	0	0	0 1	0	0	0	0 0		0	1 0	0	0 0		0	0 0		0	0	0	2 2	0	1	2
	140584	0	0 1	0	2 0	0	2 1	0	0	0 0	1	0	0	0 0 0 0	0	1	0	0 0		1	1 0	1	0 2		0	0 2	2 2 0	0	0	1 0	0 1	0	2	2
	214 140283	0	0 0	0	0 0	0	0 0	0	0	0 0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0 5 0	0	0 0	0 0	0	0 0	0 0 0 2	0	0	0	0 0	0	0	0
	141655 141662	0	0 0 0 0	0	1 0 0 4	0	3 0 1 2	0	0	1 0 0 0	1 3	0 2	0	0 0	0	0 3	0	1 0) 1) 3	0	0 1 3 0	0 3	0 0	0 0	0 14	0 0 4 1	0 0 5 7	0 10	0	0	0 0 1 0	0	0 2	0 10
1	246148 152397	0	0 12 0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
з	140365 146952	0	0 0	0	0 0	0	0 0	0	0	0 1	0	0	0	0 0	0	0	0	0		0	9 0	0	2 2	2 0	0	1 0		0	0	1	0 0 7 0	0	0	0
2002	137732	0	0 0	0	0 0	0	0 0	0	1	0 1	1	0	0	0 0	0	0	0	0 1		0	2 0	0	1 :		0	0 0	0 0	0	0	0	0 0	0	0	0
	140302	1	0 0	1	0 0	0	0 0	0	0	0 0	0	0	0	0 0 0 0	0	0 0	0	0 0		0	0 0	0	0 2		0	0 1	1 0	0	0	0	0 0	0	0	1
	140737 146907	0 18	0 1 1 0	2 64	0 0 1 0	0	0 1 0 0	0	0	0 1 0 0	0	1 0	1 0	0 0 0 0	0	0	0	0 0	0 0	0	1 0 0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	1 0 0 0	0	0	1 0
	140870 141433	0	0 0 1 0	0	1 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 0 0	0	0 0	0 0	0 2	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
	141435	0 14	0 0 7 0	0 2	2 1 2 0	0	7 3	0	3	1 0 2	2	2	1	1 7	3	1	3	0 0		2	3 0	1	0	10 L 0	4	1 0	0 0	3	0	2	0 0	0	0	0
	138802 141908	9 5	5 0	28	0 1	0	3 0	5	0	0 0	0	0	0	0 0	0	1	0	0 0		0	0 0	0	0 0		1	0 3	0 0 3 1	1	0	0	2 0	1	1	0
	138636	0	4 0 0 1	2	0 0	0	0 3	1	0	1 0	0	0	0	0 0	0	0	0	0 0		0	1 0	0	0 0		0	0 :	1 0	0	0	0	3 0 0 0	0	0	0
	140728 378492	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	2	0 0	0 0	0	0 0	0 1 0 0	0	0	1 0	0 0	0	0	0
	140103 141644	0	0 0 0 1	0	0 0 0 0	0	0 0 1 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
	152378 141651	0	2 0 0 0	0	0 0 0 0	0	0 0	0	0	0 0	0	0	0	0 0 0 0	0	0	0	0	0 0	0	0 0 0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0 0 0	0	0	0
enue a	181373 139442	0	1 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	1 0	0	0	0 0	0 1	1	0	0	0 0	0	0	0
licum	111604 111022 111540	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 1	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 1	0	0	0		0	0	0
	111340	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	0 0	0	0 0		0	0 0	0 0	0	0	0	0 0	0	0	0
	111184 834039	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0	0	0
oosa	111250 110869	0	0 0 0 0	0	0 0 0 0	0	0 0	0	0	0 0 0 0	0	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0	0	0 0 0 0	0	0	0
	111484 128545	0	0 0 2 0	0 3	0 0 1 0	0	0 0 7 5	0	0	0 0 3 1	0	0 2	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0 2 1	0	0 0	0 0	0 2	0 0	0 0 1 8	0	0	0	0 0 7 0	0	0	0
aris	123080 123867	0	0 0 0 0	0	0 0	0	0 0	0	0	0 0	1	0	0	0 0 0 0	0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	1	0 0 0 0	0	0	0
	123206 236130	4 3	2 2 1 0	0	14 0 0 0	0	7 11	0	3 :	10 18 0 0	15	0	3	2 0	0	4	0	0 0		1	17 6	14	2 9	9 3) 0	0	0 0	7 20	2	1	5 1	4 9 0 0	17 0	11	13
ata	1250/3 125080 125064	0	9 0 0 n	1	8 0 0 0	0	1 7	8	8	6 7 0 ^	3 7 0	3	1 1	0 0	0	3 0	0	2	2 0) 1	1	9 3 0 ^	0	5 6	2 0 0	3	0 4	4 17 0 0	23 0	0	13 1	0 9 38 0 ^	12	21 0	28 0
	123200	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0 0 0 4	0	0 0	0	0 0		0	0 0	0 1	0	0	2	3 0 0 0	0	0	1
lus	124929 124273	0	0 0	0	0 0	0	0 0 1 1	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0 L 0	0	0 0 1 0	0	0 0	0 0	0	0 0	0 1 1 0	0	0	0	1 1 0 3	0	0	0 2
latum	123106 124392	0	1 0 0 0	2 0	10 0 0 0	0	1 3 0 0	0	0	0 1 0 0	0	1 0	4 0	0 0 0 0	0	7 0	0	0	L 3 D 0	1 0	14 0 0 0	18 0	2 9	9 11 0 0	15 0	0 2	1 3 0 0	1 0	0	1	1 0 2 0	0	0	0
escens	124394 124373	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0		0	1 0	0	1 1		0	0 0		0	0	0		0	0	0
eiongata	14/4372 123449	0	0 0	0	U 0 1 0	0	U 1 2 0	0	1	0 0	0	0	0	0 0 1 0	0	0	0	0		0	U 0 0 1	1	0	, 0 L 1	1	U (0 0	0	0	0		0	0	0
	124455	0	0 1	0	0 0 1 0	0	0 0	J 1	0	0 0 2 1	1	1	1	0 0	0	0 4	2	1	, 0 2 1	1	2 1 0 2	0	0	. 1 I 0	0	2 0	0 0	0	0	0	0 0	0	0	0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 $\begin{smallmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0$ 0 27 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 7 0 0 1 0 0 0 1 0 0 0 0 0 0 4 0 0 0 2 0 0 0 6 0 0 0 0 0 0 0 6 0 2 0 0 1 2 0 0 0 0 0 0 0

C. PSA and TOC Results

Station	%	%	%	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	%	Folk	Folk	TOC
	GRA	SAND	MUD	COAR	COAR	MEDI	GRAV	FINE	COAR	COAR	MEDI	SAND	FINE	COAR	COAR	MEDI	SILT	FINE	CLAY	Classif	Abbre	(%)
	VEL			SE	SE	UM	EL	GRAV	SE	SE	UM		SAND	SE	SE	UM		SILT		ication	viatio	
				GRAV	GRAV	GRAV		EL	SAND	SAND	SAND			SILT	SILT	SILT					n	
				EL	EL	EL																
1	0.02	93.26	6.72%	0.00%	0.00%	0.00%	0.00%	0.02%	0.07%	0.00%	12.31	60.43	20.46	0.11%	2.20%	1.38%	1.39%	1.17%	0.48%	Sand	S	2.0517
	%	%									%	%	%									5095
3	1.43	92.17	6.40%	0.00%	0.00%	0.29%	0.20%	0.94%	2.23%	0.14%	18.00	54.89	16.91	0.09%	1.87%	1.30%	1.54%	1.13%	0.46%	(gravel	(g)S	1.3560
	%	%									%	%	%							ly)		/596
7	177	C1 CC	20.61	0.000/	0.000/	F 120/	C 240/	C 270/	F 400/	12.22	22.42	14.00	E 470/	2 1 40/	2 6 40/	4 200/	4 5 40/	2.000/	1.020/	Sand		2 0 2 0 2
/	1/./ 20/	61.66	20.61	0.00%	0.00%	5.12%	6.24%	6.37%	5.48%	12.32	23.43	14.96	5.47%	3.14%	3.64%	4.39%	4.54%	2.99%	1.92%	graveli	gmS	2.0283
	5%	70	70							70	70	70								y mudd		50414
																				v Sand		
9	0.13	91 45	8 4 2 %	0.00%	0.00%	0.00%	0.02%	0 1 1 %	0.06%	0.00%	3 46%	50 58	37 35	1 1 3%	1 81%	2 00%	1 46%	1 29%	0 73%	Sand	S	1 9670
	%	%	0.12/0	0.0070	0.0070	0.0070	0.02/0	0.11/0	0.0070	0.0070	5.10/0	%	%	1.13/0	1.01/0	2.00/0	1.10/0	1.2570	0.7570	Sana	5	51601
10	0.49	74.03	25.48	0.00%	0.00%	0.00%	0.12%	0.36%	0.77%	9.91%	30.32	26.15	6.88%	3.38%	4.75%	5.93%	6.00%	3.51%	1.91%	mudd	mS	1.9280
	%	%	%								%	%								y Sand		97075
15	1.70	41.92	56.38	0.00%	0.00%	0.00%	0.55%	1.16%	1.26%	0.27%	3.00%	13.85	23.55	15.17	10.10	10.20	9.70%	6.58%	4.62%	(gravel	(g)sM	6.7731
	%	%	%									%	%	%	%	%				ly)		30816
																				sandy		
																				Mud		
16	0.89	40.60	58.52	0.00%	0.00%	0.00%	0.71%	0.17%	0.19%	0.00%	1.88%	16.03	22.50	14.77	10.89	10.62	10.19	7.05%	4.99%	sandy	sM	7.8594
	%	%	%									%	%	%	%	%	%			Mud		44146
17	0.14	68.89	30.98	0.00%	0.00%	0.00%	0.02%	0.12%	0.53%	3.33%	25.11	30.91	8.99%	4.19%	5.66%	6.68%	7.14%	4.56%	2.75%	mudd	mS	2.0674
	%	%	%								%	%								y Sand		10741
18	0.14	78.06	21.79	0.00%	0.00%	0.00%	0.01%	0.13%	0.56%	3.63%	28.76	36.60	8.52%	2.54%	4.10%	4.58%	5.13%	3.41%	2.03%	mudd	mS	1.6536
	%	%	%	0.000/	0.000/	0.000/	0.000/	0.070/	0.000/		%	%							0.000/	y Sand		33855
19	0.07	67.80	32.13	0.00%	0.00%	0.00%	0.00%	0.07%	0.23%	4.42%	30.28	27.06	5.81%	4.38%	5.36%	7.06%	7.64%	4.83%	2.86%	mudd	mS	2.1402
20	%	%	%	0.000/	0.000/	1 200/	2.040/	4.000/	C 770/	7.070/	%	%	F 000/	4.000/	4.000/	F F 20/	F C00/	2.070/	2.650/	y Sand		54408
20	9.20	64.U7 %	26.72	0.00%	0.00%	1.30%	3.04%	4.86%	6.77%	7.07%	23.06	21.29	5.88%	4.08%	4.90%	5.53%	5.09%	3.87%	2.05%	graven	gms	2.0001
	70	70	70								70	70								y mudd		57504
																				v Sand		
22	2 5 9	73 44	23 97	0.00%	0.00%	0.00%	0.92%	1 68%	3 78%	10.99	32.92	20.21	5 54%	4 32%	4 02%	4 93%	5.02%	3 35%	2 32%	(gravel	(g)mS	1 8723
	%	%	%	0.0070	0.0070	0.0070	0.5270	1.00/0	0.7070	%	%	%	3.3170	1.5270	1.02/0	1.5570	5.0270	5.5570	2.5270		(8)113	21936
	,	,.	,								,.									mudd		
																				y Sand		
23	0.25	82.16	17.59	0.00%	0.00%	0.00%	0.07%	0.18%	0.89%	6.46%	39.11	31.53	4.17%	2.78%	2.97%	3.69%	4.00%	2.59%	1.55%	mudd	mS	1.3478
	%	%	%								%	%								y Sand		157
24	0.45	83.39	16.16	0.00%	0.00%	0.00%	0.05%	0.40%	1.02%	13.60	34.60	26.62	7.55%	2.87%	2.65%	3.48%	3.61%	2.29%	1.26%	mudd	mS	1.4583
	%	%	%							%	%	%								y Sand		84054
25	1.10	71.26	27.65	0.00%	0.51%	0.00%	0.09%	0.50%	0.66%	2.26%	21.89	31.47	14.98	4.66%	4.74%	6.34%	6.18%	3.65%	2.08%	mudd	mS	1.6719
	%	%	%								%	%	%							y Sand		35508
26	0.51	73.10	26.38	0.00%	0.00%	0.33%	0.01%	0.17%	0.38%	1.10%	18.91	33.97	18.74	4.69%	4.34%	5.85%	5.82%	3.60%	2.09%	mudd	mS	1.7134
	%	%	%			0.000					%	%	%				-			y Sand		12144
27	0.99	73.81	25.20	0.00%	0.00%	0.60%	0.20%	0.18%	0.92%	2.28%	26.70	33.37	10.54	3.96%	4.05%	5.25%	5.82%	3.80%	2.31%	mudd	mS	1.7721
20	%	%	% 22.02	0.000/	0.000/	0.000/	0.000/	0.400/	0.4.00/	0.000/	%	%	%	7 720/	4 5 20/	C C 404	C C C C C C C C C C C C C C C C C C C	4 5 20/	2.020/	y Sand		5/9/9
28	0.10	66.88 %	33.02	0.00%	0.00%	0.00%	0.00%	0.10%	0.16%	0.00%	4./3%	31.12	30.87	1.72%	4.52%	6.64%	6.60%	4.53%	3.02%	mudd	ms	2.0/96
20	⁷⁰	70	70 12 5 2	0.000/	0.00%	0.00%	0.000/	0.000/	0.010/	0.000/	0.00%		70 27 / 1	11.62	E E 20/	0 1 70/	0 360/	E 420/	2 4 2 0/	y Salia		3/003
29	0.00	50.47 %	43.52 %	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	73.02	57.41 %	11.03 %	5.52%	9.1/%	0.30%	5.42%	5.42%	huuu hasv	1112	2.5721
	/0	70	70									70	/0	/0						y Janu		22003

Station	%	%	%	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	%	Folk	Folk	TOC
		SAND	MUD	COAR	COAR	MEDI	GRAV	FINE	COAR	COAR	MEDI	SAND		COAR	COAR	MEDI	SILT	FINE	CLAY	Classif	Abbre	(%)
	VEL			GRAV	GRAV	GRAV		EL	SAND	SAND	SAND		SAND	SILT	SILT	SILT		SILI		ication	n	
				EL	EL	EL			_	_	_				_	_						
30	0.10	61.46	38.44	0.00%	0.00%	0.00%	0.02%	0.08%	0.07%	0.00%	1.35%	26.09	33.96	8.71%	6.04%	9.02%	7.53%	4.45%	2.68%	mudd	mS	2.0057
21	%	%	% 20.67	0.00%	0.00%	0.00%	0.17%	0.499/	0.96%	0.00%	1 76%	% 20.17	% 22.00	6 120/	4 60%	7.00%	6 1 2 9/	4.02%	2 40%	y Sand	~~ <u>~</u> ~	48252
51	0.00 %	%	50.67 %	0.00%	0.00%	0.00%	0.17%	0.46%	0.80%	0.00%	4.70%	50.17 %	52.00 %	0.42%	4.00%	7.09%	0.15%	4.02%	2.40%	v Sand	1115	04832
32	0.95	69.95	29.11	0.00%	0.62%	0.09%	0.10%	0.14%	0.23%	0.00%	7.77%	34.03	27.91	4.17%	4.72%	6.81%	6.58%	4.39%	2.43%	mudd	mS	1.6017
	%	%	%									%	%							y Sand		64676
33	32.0	39.81	28.18	0.00%	0.00%	14.77	9.51%	7.74%	5.56%	0.90%	8.47%	14.41	10.47	3.38%	4.54%	6.30%	6.20%	4.22%	3.54%	mudd	msG	2.1783
	1%	%	%			%						%	%							y sandy		63402
																				Gravel		
34	51.9	31.24	16.82	0.00%	14.60	18.34	12.83	6.18%	3.41%	2.76%	8.15%	8.66%	8.26%	3.03%	2.62%	3.71%	3.67%	2.35%	1.45%	mudd	msG	2.2435
	4%	%	%		%	%	%													У.		15202
																				sandy		
36	0.06	53.99	45.96	0.00%	0.00%	0.00%	0.00%	0.06%	0.15%	0.00%	0.55%	21.42	31.86	9.87%	7.83%	11.40	9.16%	4.88%	2.80%	mudd	mS	2.4558
	%	%	%									%	%			%				y Sand		94002
37	0.21	77.91	21.88	0.00%	0.00%	0.00%	0.15%	0.06%	0.12%	1.05%	19.83	37.71	19.19	2.03%	4.99%	5.79%	4.74%	2.76%	1.58%	mudd	mS	1.4444
20	%	%	%	0.000/	0.000/	0.240/	0.00%	0.010/	0.00%	0.000/	%	%	%	7.040/	4.420/	7 420/	6.240/	2.000/	2.450/	y Sand		32361
38	0.22	67.36 %	32.43	0.00%	0.00%	0.21%	0.00%	0.01%	0.06%	0.00%	1.05%	28.91	37.33	7.94%	4.42%	7.42%	6.31%	3.88%	2.45%	mudd y Sand	ms	1.9137
39	0.48	75.04	24.48	0.00%	0.00%	0.00%	0.27%	0.21%	0.06%	0.00%	4.72%	41.81	28.45	1.45%	5.74%	6.75%	5.41%	3.28%	1.86%	mudd	mS	1.5695
	%	%	%									%	%							y Sand		51821
41	0.01	84.91	15.08	0.00%	0.00%	0.00%	0.00%	0.01%	0.18%	11.88	34.69	28.48	9.68%	1.84%	3.39%	3.59%	3.09%	2.03%	1.14%	mudd	mS	1.3372
42	%	%	% 22.05	0.00%	0.00%	0.00%	0.029/	0.05%	0.410/	%	%	%	10.40	1.000/	F 2F0/	C 0C0/	F 1 40/	2.040/	1.020/	y Sand		05765
42	0.07 %	76.88 %	23.05	0.00%	0.00%	0.00%	0.02%	0.05%	0.41%	1.21%	18.61	37.16	19.49	1.86%	5.35%	6.06%	5.14%	3.04%	1.62%	v Sand	ms	1.3490 69479
43	0.09	81.54	18.38	0.00%	0.00%	0.00%	0.07%	0.01%	0.06%	0.00%	5.35%	48.51	27.62	0.84%	5.16%	4.68%	3.69%	2.54%	1.47%	mudd	mS	1.3679
	%	%	%									%	%							y Sand		91893
44	0.05	79.14	20.81	0.00%	0.00%	0.00%	0.01%	0.04%	0.02%	0.00%	1.30%	46.12	31.70	0.38%	5.87%	6.03%	4.51%	2.63%	1.39%	mudd	mS	1.2971
/15	% 0.06	% 63.07	% 36.87	0.00%	0.00%	0.00%	0.03%	0.03%	0.07%	0.00%	2 07%	% 27.59	% 33.34	8 3 7%	5 5 2%	8 3 3 %	7 /0%	1 50%	2 75%	y Sand	mS	97925
	%	%	%	0.0070	0.0070	0.0070	0.0370	0.0370	0.0770	0.0070	2.0770	%	%	0.5770	5.5270	0.5570	7.4070	4.50%	2.7570	y Sand	1115	68393
64	0.12	85.31	14.57	0.00%	0.00%	0.10%	0.00%	0.02%	0.04%	0.00%	14.68	54.27	16.31	0.56%	5.23%	4.04%	2.67%	1.45%	0.62%	mudd	mS	1.0256
	%	%	%								%	%	%							y Sand		50484
77	0.13	84.94 •⁄	14.92	0.00%	0.00%	0.00%	0.11%	0.02%	0.04%	0.00%	6.19%	58.47	20.24	0.48%	5.41%	4.06%	2.73%	1.52%	0.72%	mudd	mS	1.0657
79	0.02	⁷⁰ 84.11	⁷⁰ 15.87	0.00%	0.00%	0.00%	0.00%	0.02%	0.05%	0.00%	1.97%	56.08	26.01	0.10%	4.67%	4.62%	3.38%	2.03%	1.07%	mudd	mS	1.1496
	%	%	%									%	%							y Sand		88014
80	0.08	87.32	12.61	0.00%	0.00%	0.00%	0.00%	0.08%	0.19%	18.72	22.55	32.46	13.39	0.84%	3.90%	3.42%	2.49%	1.35%	0.62%	mudd	mS	0.8354
01	%	%	%	0.000/	0.000/	0.000/	0.00%	0.020/	0.00%	%	%	%	%	4.470/	2.010/	2.64%	4.000/	0.010/	0.470/	y Sand	6	76357
81	0.03	90.28 %	9.69%	0.00%	0.00%	0.00%	0.00%	0.03%	0.09%	5.21%	44.76	36.97	3.25%	1.17%	3.01%	2.64%	1.89%	0.81%	0.17%	Sand	5	0.7204
82	0.12	85.93	13.94	0.00%	0.00%	0.00%	0.01%	0.11%	0.38%	0.00%	16.85	56.29	12.42	0.79%	5.25%	3.71%	2.45%	1.26%	0.49%	mudd	mS	0.7513
	%	%	%								%	%	%							y Sand		09017
83	1.28	85.71	13.01	0.00%	0.00%	0.06%	0.48%	0.75%	1.30%	0.55%	26.95	47.34	9.56%	0.82%	4.32%	3.48%	2.56%	1.30%	0.52%	mudd	mS	0.8736
01	%	% 90.1 <i>C</i>	% 11.24	0.00%	0.00%	0 1 20/	0.210/	0.15%	0.00%	0.10%	19.01	57.22	11 74	0.46%	1 050/	3 050/	2 2 10/	1 200/	0 2 / 0/	y Sand	mç	/3214
04	0.49 %	80.10 %	×1.34 %	0.00%	0.00%	0.13%	0.21%	0.13%	0.09%	0.10%	10.91 %	%	%	0.40%	4.05%	5.05%	2.24%	1.20%	0.54%	v Sand	1115	25815
85	30.2	59.66	10.14	0.00%	16.83	5.46%	2.79%	5.12%	9.66%	0.00%	2.63%	34.02	13.36	0.28%	3.54%	2.85%	1.93%	1.04%	0.49%	mudd	msG	1.0324
	0%	%	%		%							%	%							у		8954

Station	%	%	%	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	% V	%	%	% FINE	% V	%	Folk	Folk	TOC
	GRA VFL	SAND	MUD	COAR SF	COAR SF	UM	GRAV FL	GRAV	COAR SE	COAR SF	UM	SAND	FINE	COAR SE	COAR SE	UM	SILT	FINE	CLAY	Classif	Abbre viatio	(%)
				GRAV	GRAV	GRAV		EL	SAND	SAND	SAND			SILT	SILT	SILT					n	
				EL	EL	EL																
																				sandy Gravel		
86	0.03	82.15	17.82	0.00%	0.00%	0.00%	0.00%	0.03%	0.04%	0.00%	2.01%	55.45	24.64	0.40%	6.04%	5.15%	3.47%	1.84%	0.91%	mudd	mS	1.0522
	%	%	%									%	%							y Sand		75831
87	0.23	81.76	18.01	0.00%	0.00%	0.21%	0.01%	0.01%	0.05%	0.00%	1.43%	52.63	27.65	0.20%	5.50%	5.11%	3.79%	2.27%	1.15%	mudd	mS	1.1517
88	[%]	[%]	12.36	0.00%	12.89	13.58	3.90%	4.75%	4.61%	4.24%	12.54	21.35	% 9.77%	1.16%	3.05%	3.14%	2.65%	1.53%	0.84%	y sand mudd	msG	1.2822
	3%	%	%		%	%					%	%								y		96803
																				sandy		
80	27.6	64.67	7.69%	0.00%	1 03%	12 15	7.68%	3 78%	/ 38%	11.03	22.90	20.73	5.63%	0.59%	2 10%	1 05%	1 57%	0.94%	0.45%	Gravel	amS	1 0227
85	4%	%	7.0570	0.0076	4.0370	%	7.0070	5.78%	4.50%	%	%	%	5.0570	0.5570	2.15/0	1.5570	1.5770	0.5470	0.4370	y	giii5	38939
																				mudd		
	1.00	05 70	12.00	0.000/	0.000/	0.649/	0.570/	0.400/	0.400/	6.450/	26.40	25.26	7.420/	1.100/	2.00%	2.450/	2.450/	4.220/	0.400/	y Sand	(1)	0.0226
90	1.60	85.73	12.66	0.00%	0.00%	0.64%	0.57%	0.40%	0.40%	6.15%	36.40	35.36	7.43%	1.18%	3.89%	3.45%	2.45%	1.22%	0.48%	(gravel	(g)mS	0.8326
	,,,	,,,	,,,								,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								mudd		57771
																				y Sand		
91	0.06	82.26	17.68	0.00%	0.00%	0.00%	0.03%	0.03%	0.17%	3.74%	24.16	39.21	14.97	1.21%	5.28%	4.94%	3.56%	1.82%	0.87%	mudd	mS	1.0410
92	% 0.07	[%]	[%]	0.00%	0.00%	0.00%	0.05%	0.02%	0.08%	0.00%	[%]	[%]	[%]	0.61%	5.51%	4.86%	3.62%	2.04%	0.96%	y sand mudd	mS	1.0446
	%	%	%	010070							%	%	%				0.02/0		0.0075	y Sand		31021
93	0.02	80.94	19.04	0.00%	0.00%	0.00%	0.02%	0.00%	0.06%	0.00%	13.09	47.79	19.99	0.72%	5.75%	5.40%	3.96%	2.13%	1.09%	mudd	mS	1.1319
06	% 26.0	%	% 7.07%	21.75	1.00%	1 20%	0.00%	0.06%	0.05%	10.60	% 22.75	% 10.17	% 2.26%	1 0.0%	1 000/	1 0 2 0/	1 20%	0.69%	0.20%	y Sand	۳۶	35447
90	0%	%	7.0776	%	1.00%	1.50%	0.98%	0.90%	0.93%	10.09 %	%	19.17 %	2.30%	1.00%	1.00/0	1.05/0	1.59%	0.08%	0.20%	y Sand	go	14582
100	0.15	84.08	15.77	0.00%	0.00%	0.07%	0.05%	0.03%	0.07%	1.20%	27.60	44.67	10.54	1.23%	5.31%	4.27%	2.92%	1.44%	0.60%	mudd	mS	0.8971
	%	%	%	0.000/	0.000/					10 70	%	%	%				1.010(4.050(0.500/	y Sand		59479
102	32.8	59.28 %	7.92%	0.00%	8.88%	6.89%	8.83%	8.20%	6.13%	12.72	20.26	15.47	4.70%	0.68%	1.84%	2.02%	1.81%	1.05%	0.52%	mudd	msG	1.0357
	070	70								,,,	,,,,	/0								sandy		55550
																				Gravel		
104	52.2	43.48	4.23%	36.91	5.45%	3.92%	3.32%	2.69%	2.09%	6.69%	16.49	14.97	3.23%	0.32%	1.38%	1.14%	0.84%	0.43%	0.12%	sandy	sG	0.8638
106	9% 6.16	% 81.82	12.02	% 0.00%	0.00%	1.41%	1.74%	3.01%	2.73%	3.28%	% 25.80	% 41.25	8.75%	0.80%	3.92%	3.12%	2.35%	1.27%	0.56%	gravel	gmS	99508
	%	%	%								%	%								y	8	2748
																				mudd		
109	2 21	94.02	12.66	1 20%	0.00%	0.22%	0.02%	0.07%	0.10%	2 1 / 0/	21 77	42.50	7 /2%	1 22%	1 50%	2 66%	2 5 7%	1 22%	0.20%	y Sand	(g)mS	0 7097
108	2.51	84.03 %	13.00	1.00%	0.08%	0.55%	0.0270	0.07%	0.19%	2.14/0	%	42.30 %	7.45%	1.25%	4.39%	5.00%	2.3770	1.23%	0.39%	(graver	(g)IIIS	91817
		-																		mudd		
100	5.00	00.65	42.07	4.000/	0.000/	0.570/	0.000	0.5.00/	0.700/	6.2.49/	24.00	22.70	6.00%		2.069/	0.75%	2.05%	4.2004	0.570/	y Sand		0.0050
109	5.38	80.65 %	13.97	1.23%	0.06%	2.57%	0.96%	0.56%	0.70%	6.24%	34.00 %	32.78	6.93%	1.44%	3.96%	3./5%	2.86%	1.38%	0.57%	gravell	gmS	0.9653
	/0	70	70								/0									, mudd		,2105
																				y Sand		
110	0.03	82.23	17.74	0.00%	0.00%	0.00%	0.01%	0.02%	0.05%	0.01%	17.03	48.53	16.60	0.82%	5.52%	4.84%	3.58%	1.97%	1.02%	mudd	mS	0.9970
	%	%	%								%	%	%							y sand		03806

D. Contaminated Sediment Results

							Sam	pling Stat	ion						CEFAS L	EVELS	Canadian	Levels
Metal	1	2	3	6	8	9	13	15	19	22	23	25	26	30	AL1	AL2	ISQG/TEL	PEL
Arsenic	14.3	14.3	9.9	19.7	13.0	15.2	20.3	14.7	8.1	12.5	8.3	6.1	6.1	6.8	20	100	7.24	41.6
Cadmium	<0.2	0.3	<0.2	<0.2	0.3	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.4	5	0.7	4.2
Chromium	32.7	61.7	27.0	36.2	42.5	36.3	39.4	55.9	25.9	34.6	31.8	30.9	33.3	36.4	40	400	52.3	160.0
Copper	19.3	18.5	7.2	7.0	12.1	17.5	7.3	17.3	3.8	5.6	5.7	5.2	5.7	5.9	40	400	18.7	108
Lead	21.6	41.4	17.7	27.2	21.6	23.7	16.9	38.8	16.7	18.9	15.3	13.2	15.4	17.9	50	500	30.2	112
Mercury	0.02	0.07	0.02	0.04	0.02	0.03	0.02	0.07	0.02	0.02	0.02	0.02	0.02	0.03	0.3	3	0.13	0.7
Nickel	13.8	25.9	8.1	14.7	12.2	13.7	18.5	22.5	9.0	12.5	11.4	10.9	11.9	12.3	20	200	none	none
Zinc	80.3	70.8	29.6	48.4	40.2	58.3	44.7	64.4	32.3	34.3	30.6	24.7	27.3	28.4	130	800	124	271
Aluminium															none	none	none	none
Lithium															none	none	none	none

Cambois Connection

					Sampling Station	1	2	3	6	8	9	13	15	19	22	23	25	26	30	Potoroneo Matorial (% Pocovoru)	OC Blank
Analyte	Accreditation	Method No	Limit of Detection	Units	Date Extracted	Sediment	Reference material (% Recovery)														
Dibutyltin	UKAS	ASC/SOP/301	1	µg/Kg (Dry Weight)	19/10/2022	<5	<5	<1	<5	<1	<1	<5	<5	<5	<1	<5	<5	<5	<5	109	<1
Tributyltin	UKAS	ASC/SOP/301	1	µg/Kg (Dry Weight)	19/10/2022	<5	<5	<1	<5	<1	<1	<5	<5	<5	<1	<5	<5	<5	<5	88	<1

		Sampling Station													Sum o	f PAH's	Canadian Levels		Sum ISOG/TEL	CEFAS
µg/Kg	1	2	3	6	8	9	13	15	19	22	23	25	26	30	CEFAS AL1	CEFAS AL2	ISQG/TEL	PEL	Sum ISQU/ TEE	THC
ACENAPTH	87.0	56.8	12.5	35.3	40.9	25.8	10.1	79.4	3.74	1.77	1.89	1.69	1.97	1.94	3712	12760	6.71	88.9	766	100000
ACENAPHY	17.5	13.3	2.69	9.24	7.39	5.92	3.73	17.7	1.83	1.17	1.52	1.96	1.64	2.55	3712	12760	5.87	128	766	100000
ANTHRACN	81.8	81.9	17.3	47.8	42.0	24.7	14.9	98.9	7.36	3.02	3.56	4.29	4.31	3.72	3712	12760	46.9	245	766	100000
BAA	106	122	19.6	77.2	45.1	31.0	25.3	136	14.0	7.76	12.7	15.8	12.4	13.9	3712	12760	74.8	693	766	100000
BAP	101	111	17.7	75.2	43.9	30.7	27.6	121	15.4	12.0	18.1	18.9	19.1	28.3	3712	12760	88.8	763	766	100000
BBF	73	129	13.6	86.6	29.7	19.5	34.3	123	21.6	13.3	26.3	27.0	28.0	46.1	3712	12760			766	100000
BENZGHIP	134	120	22.1	91.8	58.4	41.2	36.5	146	21.3	17.1	24.7	26.0	27.5	49.6	3712	12760			766	100000
BKF	58.8	84.7	15.2	71.1	27.2	17.7	24.8	97.6	15.8	11.7	20.2	20.2	21.2	17.4	3712	12760			766	100000
CHRYSENE	113	127	28.0	81.4	50.1	34.0	28.0	140	15.5	9.65	17.7	18.2	15.2	17.5	3712	12760	108	846	766	100000
DBENZAH	18.7	22.7	2.78	16.3	6.99	5.15	6.45	24.5	3.56	2.87	4.40	3.89	4.44	6.48	3712	12760	6.22	135	766	100000
FLUORANT	149	229	30.4	123	65.0	43.1	41.1	219	26.3	13.5	25.5	28.2	20.7	24.0	3712	12760	113	1494	766	
FLUORENE	108.0	65.0	14.3	39.8	46.3	32.8	13.0	89.1	5.08	2.55	2.96	2.79	3.29	4.15	3712	12760	21.2	144	766	
INDPYR	45.5	91.7	10.6	71.2	18.7	13.8	30.9	88.9	21.5	16.7	25.3	25.3	27.8	55.8	3712	12760	20.2	201	766	
NAPTH	224.0	122.3	28.3	81.5	82.6	66.9	28.1	159	13.4	8.00	7.77	5.75	12.9	11.3	3712	12760	34.6	391	766	
PHENANT	636	359	80.5	201	267	179	64.7	444	28.1	15.4	22.8	27.7	23.4	26.0	3712	12760	86.7	544	766	
PYRENE	170	213	34.2	128	77.1	50.3	41.5	223	23.7	13.1	21.8	27.4	20.3	20.3	3712	12760	153	1398		
THC	134,000	105,000	24,500	83,500	67,000	47,200	33,900	134,000	19,000	14,700	16,700	16,800	20,300	31,400	100000					
Sum of PAHs	2123		350	1236	908	622	431	2207	238	150	237	255	244	329						

							Sam	pling Sta	tion						
μу/κγ	1	2	3	6	8	9	13	15	19	22	23	25	26	30	
PCB28	<0.08	0.12	<0.08	<0.08	<0.08	<0.08	<0.08	0.12	<0.08	<0.08	<0.08	<0.08	0.12	<0.08	
PCB52	<0.08	0.12	<0.08	<0.08	<0.08	<0.08	<0.08	0.11	<0.08	<0.08	<0.08	<0.08	0.14	<0.08	
PCB101	<0.08	0.18	<0.08	0.08	<0.08	<0.08	<0.08	0.13	<0.08	<0.08	<0.08	<0.08	0.25	<0.08	
PCB118	<0.08	0.29	<0.08	0.10	<0.08	<0.08	<0.08	0.11	<0.08	<0.08	<0.08	<0.08	0.32	<0.08	
PCB138	<0.08	0.32	<0.08	<0.08	<0.08	<0.08	0.10	0.10	<0.08	<0.08	<0.08	<0.08	0.34	<0.08	
PCB153	<0.08	0.27	<0.08	0.14	<0.08	<0.08	0.13	0.12	<0.08	<0.08	<0.08	<0.08	0.29	<0.08	
PCB180	<0.08	0.12	<0.08	<0.08	<0.08	<0.08	0.09	0.09	<0.08	<0.08	<0.08	<0.08	0.23	<0.08	
Sum of PCBs	0.00	1.42	0.00	0.32	0.00	0.00	0.32	0.78	0.00	0.00	0.00	0.00	1.69	0.00	0.00

E. DDV Image and Stills Proformas

Example Imagery from the DDV survey along the ECC.

Phase 1 Survey

STN24_TAKE22

STN26_TAKE25

STN28_TAKE26

STN23_TAKE21

STN25_TAKE24

STN27_TAKE23

STN29_TAKE30

STN38_TAKE29

STN45_TAKE28

Example Imagery from the **removed**⁴ DDV survey sampling stations along the western ECC option.

STN14_TAKE06_SI

STN14_TAKE06_S2

⁴ Sampling stations within the western ECC option which was subsequently removed from the survey area

STN2I_TAKE19

Phase 2 Survey

Phase 1 DDV Images and Stills Proforma

	General Metadata	Description	Your Data and Information
	Project Name	The nationally/internationally accepted version of the project name.	Berwick Bank Underwater Imagery
	Project Code	Provide a code to uniquely identify the project and allow links to be made between the tables. It is recommended that the website of organisation responsible is used followed by a unique code which should reflect the code used by the funding organisation where possible.	2022-1014
ata	Project Start Date	The date that the project started which is from when the funding was in place to start. Use the 1st of the month if the exact date is not known.	2022-03-29
Proje	Project End Date	The date that the project finished or is due to finish. Use the 1st of the month if the exact date is not known.	
	Project Website	If a project website exists give the address. This should be the web address of the environmental surveys and not, in the case of impact assessments, the engineering development.	
	Project Metadata URL	A URL which links to the metadata for the project. It is recommended that the website of organisation responsible for the work is used followed by a unique code which should reflect the code used by the funding organisation where possible.	
	Survey Name	Title of the survey	Berwick Bank Phase 1 Underwater Imagery Survey
tadati	Survey Run By	Name the organisation(s) running the survey	NPC/ENVISION
× W	Survey Type	Give the type of survey	Underwater Imagery
Surve	Survey Abstract	Brief description of the purpose of the survey and types of measurements that were made for the survey.	

Cruise Code	A unique code for the survey to	1215S
	allow links to be built between this	
	and sample event data. It is	
	recommended that the website of	
	organisation responsible for the work	
	is used followed by a unique code	
	which should reflect the code used	
	by the funding organisation where	
	possible.	
Survey Metadata URL	A URL which links to the metadata	
·····	for the survey. It is recommended	
	that the website of organisation	
	responsible for the work is used	
	followed by a unique code which	
	should reflect the code used by the	
	funding organisation where possible.	
Data Originator	The organisation who has created	ENVISION
	the data set. If the organisation is	
	not in European Directory of Marine	
	Organisations (EDMO) please	
	contact enquiries@oceannet.org to	
	add it. If a person who is not	
	associated with any organisation	
	generated the data then please	
	provide the name in the sample	
	event table.	
Data Owner	Organisation that owns the data set.	
	If the organisation is not in FDMO	
	please contact	
	enquiries@oceannet org to add it	
Survey Start Date	The date and time that the survey	21/09/2022
ourvey otart Date	started	21/03/2022
Survey End Date	The date and time that the survey	2022-09-24
	ended. May be left null if the survey	
	is ongoing	
Data Acquisition Time Zone	Give the time zone in which the date	BST
	and time of the data acquisition is	501
	made (preferably Coordinated	
	Universal Time (UTC))	
Snatial Coordinate Reference	Spatial coordinate reference system	
Svetom	Describes the system of spatial	
oystem -	referencing is the datum used to	
	supply the decimal latitudes and	
	longitudes There are additional	
	fields to indicate the deturn of the	

	original data if the coordinates have been transformed.	
Original Coordinate Reference System (if different)	Datum of original coordinates if different from the one used to supply data	
Transformation	If transformation is undertaken to create decimal degrees	
Position Fix, Method and Source	Please provide method and source of the of the position fix instrument	
Horizontal Accuracy (m)	How accurate the spatial positions are likely to be.	
Depth Reference	Give the reference to which the depth has been calculated e.g. Ordnance Datum Newlyn; Highest Astronomical Tide. Mandatory if seabed depths are given for each sample.	
Vertical Positional Accuracy (m)	How accurate the vertical resolution is. Must be provided if seabed depths are given.	
Platform Type	The platform type (e.g. Research Vessel) from which the sampling device was deployed.	
Platform Name	Mandatory if a vessel was used for the survey. The name of the ship. If your ship is not on the list please contact accessions@ices.dk	
Marine Recorder Survey ID	Enter the Marine Recorder Survey number if the survey is entered into Marine Recorder. This is a unique number which is assigned by Marine Recorder on entering survey information, and starts with the letters MR and is then often followed by the acronym of the organisation which owns the survey.	

Mes	sh Guide	Enter the MESH GUID number for the survey. This is the Globally unique identifier (GUI) of the habitat map. It consists of 2-letter country code (which corresponds to ISO3166-1) plus 6 digits. Each GUI must correspond to a record in the metadata catalogue. A metadata template can be downloaded from	
crui	iseReportReference	website, www.searchmesh.net. Cruise report or boat log reference if applicable.	
surv	veyReportReference	Survey report reference if applicable.	
con	fidentiality	Note if the survey is confidential. If not noted, the data will be assumed to be releasable to the public	

	Gear Metadata	Description	Your Data and Information
	Gear Type	Specific sampling equipment used	Remotely Operated Vehicle (ROV)
nformation	Method ID Code	CruiseCode_GearCode	_ROV
1ethod II	Sampling Device	Category of sampling device used	311 Cameras
2	Camera Height (m)	The distance in metres from the seabed to the camera. This can be an average height along a transect or the height at which an image is taken with a drop-down camera. If	Variable

		an average, please specify a range (if known) in methodNotes.	
Ca	mera Make & Model	The make and model(s) of the camera(s), lenses and housing used to collect the data.	QYSEA FIFISH V6 EXPERT
De	evice Configuration	The device configuration of the video tow set-up including: focal range, scaling lasers, filters used, mounting angle, dGPS used, on-board monitoring facility, etc. with particular reference to any custom modifications made.	4K video footage with built in LEDs and laser pointers, approximately 10cm apart
Vi	deo/Stills Format & Compression	The format of the video/stills data collected and the compression type used.	.mkv, .jpg
Transec	ct Width (m) (Video Only)	The average width of the transect or width of video swath, if a video transect/tow. If standardised for gear record here, otherwise ignore.	
Transec	t Length (m) (Video Only)	The length of the transect or width of video swath, if a video transect/tow is a standardised length, record here, otherwise ignore this field.	
Ve	ssel Speed of Travel	Averaged speed at which the observer or vessel travelled	
	Stills File Format	The file format of the stills data collected	.jpg
Ca	amera Sledge Make	Make of camera sledge used	

Lights Make & Model	Make and model of lights used	2 x 3000 Lumen LED headlights: variable intensity via controller
Calibration Notes	To include white balancing, laser scaling, etc.	
Actual Laser Width	Scaling laser width (mm)	
Actual Laser Height	Scaling laser height (mm), where using lasers in a box or vertical orientation.	10cm
Processing Notes	Describe any post processing that was undertaken to the video and stills.	
Protocols Used	SOPs/Protocols used. Any written methodology used should be referenced and linked. If the methodology is not referenced then provide a full description here.	
Replicates	If replicates were taken please indicate number per sample.	
Analytical Laboratory	The laboratory/organisation(s) (with EDMO record ID) that analysed the samples if different from the originator identified in the general metadata. Contact MEDIN to add an organisation to this list	
Analytical Personnel	Names of the personnel who were involved in analysing the samples and their role in the analysis.	JC - analyst, AB - QA
Method Images	Reference any images of equipment set up	
Method Notes	Any further notes on sample analysis that may be of relevance.	

QC Sci	heme	Description of any quality control scheme that samples were audited under during the analysis.	
QC Metho	od Notes	Any further notes on quality control scheme that may be of relevance.	

Station Number	RepAtte mpt	Habitat Segmen t Number	Video Sample Ref	Metadat aSoLTi me (hh:mm :ss)	Metadat aEoLTi me (hh:mm :ss)	Date	BriefHa bitatDes cription (Physic al & biotic)	Method	Methodl D	Lapse Habitat StartTi me (hh:mm :ss)	Metadat aHabitat StartTi me (hh:mm :ss)	Lapse Habitat EndTim e (hh:mm :ss)	Metadat aHabitat EndTim e (hh:mm :ss)	Duratio n (hh:mm :ss)	Survey Run By	Metadat aStart - Latitude (DecDeg)	Metadat aStart - Longitu de (DecDe g)	Metadat a End - Latitude (DecDeg)	Metadat a End - Longitu de (DecDe g)	SoL Depth (m)	Distanc e Travelle d (m)
STN001	A1	1	BB_VIDE O_STN00 1_TAKE0 02_S1.mk v	11:25:29	11:28:41	2022-09-22	rippled sand	Remotely Operated Vehicle	_ROV	00:00:04	11:25:33	00:02:13	11:27:42	00:02:09	ENVISION	55.162010	-1.500150	55.162143	-1.500523	10.5	28m
STN001	A1	2	BB_VIDE O_STN00 1_TAKE0 02_S2.mk v	11:25:29	11:28:41	2022-09-22	silt/crust covered boulders and cobbles. Bryozoans , anemones , serpulid worms, crab	Remotely Operated Vehicle	_ROV	00:02:13	11:27:42	00:02:46	11:28:15	00:00:33		55.162143	-1.500523	55.162277	-1.500337	10.5	19m
STN001	A1	3	BB_VIDE O_STN00 1_TAKE0 02_S3.mk v	11:25:29	11:28:41	2022-09-22	rippled sand with one boulder and bryozoan/ hydrozoan	Remotely Operated Vehicle	_ROV	00:02:46	11:28:15	00:03:12	11:28:41	00:00:26		55.162277	-1.500337	55.162410	-1.500710	10.5	28m
STN003	A1	1	BB_VIDE O_STN00 3_TAKE0 03.mkv	11:49:36	11:52:55	2022-09-22	shelly, slightly muddy sand, starfish	Remotely Operated Vehicle	_ROV	00:00:09	11:49:45	00:03:14	11:52:59	00:03:05	ENVISION	55.161540	-1.475370	55.162070	-1.476180	16.4	79m
STN004	A1	1	BB_VIDE O_STN00 4_TAKE0 05.mkv	12:28:02	12:32:30	2022-09-22	silt covered bedrock and boulders	Remotely Operated Vehicle	_ROV	00:00:05	12:28:07	00:04:25	12:32:32	00:04:20	ENVISION	55.165030	-1.466270	55.165400	-1.466540	16.4	45m
STN005	A1	1	O_STN00 5_TAKE0 04.mkv	12:10:26	12:13:47	2022-09-22	muddy sand	Remotely Operated Vehicle	_ROV	00:00:15	12:10:41	00:03:14	12:13:55	00:02:59	ENVISION	55.161550	-1.467860	55.162060	-1.468620	28	74m

STN007	A1	1	BB_VIDE O_STN00 7_TAKE0 12.mkv	15:50:37	15:53:54	2022-09-22	shelly sandy mud with some burrows, mysids	Remotely Operated Vehicle	_ROV	00:00:18	15:50:55	00:03:10	15:54:05	00:03:10	ENVISION	55.178130	-1.389170	55.178020	-1.389680	45	35m
STN009	A1	1	BB_VIDE O_STN00 9_TAKE0 01.mkv	19:23:33	19:26:05	2022-09-22	rippled muddy sand	Remotely Operated Vehicle	_ROV	00:00:12	19:23:45	00:02:29	19:26:14	00:02:17	ENVISION	55.154790	-1.495610	55.155320	-1.496000	25	64m
STN010	A1	1	BB_VIDE O_STN01 0_TAKE0 14.mkv	06:26:21	06:29:09	2022-09-23	shelly sandy mud	Remotely Operated Vehicle	_ROV	00:00:08	06:26:29	00:02:38	06:29:07	00:02:30	ENVISION	55.183620	-1.378120	55.183960	-1.377150	45	73m
STN011	A1	1	BB_VIDE O_STN01 1_TAKE0 07.mkv	13:11:11	13:14:31	2022-09-22	silt covered boulders and cobbles, with lots of squat lobsters	Remotely Operated Vehicle	ROV	00:00:08	13:11:19	00:03:18	13:14:37	00:03:10	ENVISION	55.168020	-1.454220	55.168120	-1.454610	35	28m
STN012	A1	1	BB_VIDE O_STN01 2_TAKE0 13.mkv	16:46:32	16:50:28	2022-09-22	silt covered rock, Alyconium , briitle stars, Caridea	Remotely Operated Vehicle	 _ROV	00:00:09	16:46:41	00:03:47	16:50:28	00:03:38	ENVISION	55.161580	-1.458450	55.161920	-1.459060	25	54m
STN014	A1	1	BB_VIDE O_STN01 4_TAKE0 06_S1.mk v	12:47:24	12:51:39	2022-09-22	sandy mud, with some burrows. Brief rocky outcrops in sand	Remotely Operated Vehicle	ROV	00:00:02	12:47:26	00:03:12	12:50:38	00:03:10	ENVISION	55.167360	-1.460780	55.167365	-1.460780	33	50m (estimated)
STN014	A1	2	BB_VIDE O_STN01 4_TAKE0 06_S2.mk v	12:47:24	12:51:39	2022-09-22	silt covered rocks, with Alcyonium , some brittle stars	Remotely Operated Vehicle	ROV	00:03:12	12:50:36	00:04:01	12:51:25	00:00:49	ENVISION	55.167365	-1.460780	55.167370	-1.460780	33	, 10m (estimated)
STN015	A1	1	BB_VIDE O_STN01 5_TAKE0 08.mkv	13:32:30	13:34:09	2022-09-22	sandy mud with some burrows	Remotely Operated Vehicle	_ROV	00:00:04	13:32:34	00:01:22	13:33:56	00:01:18	ENVISION	55.164960	-1.449750	55.165180	-1.450210	37	38m
--------	----	---	---	----------	----------	------------	---	---------------------------------	-----------	----------	----------	----------	----------	----------	----------	-----------	-----------	-----------	-----------	----	------------------------
STN016	A2	1	BB_VIDE O_STN01 6_TAKE0 10.mkv	14:28:04	14:31:16	2022-09-22	sandy mud and burrows	Remotely Operated Vehicle	_ROV	00:00:43	14:28:47	00:03:09	14:31:56	00:02:26	ENVISION	55.164690	-1.440810	55.164700	-1.440920	36	50m (estimated)
STN017	A1	1	BB_VIDE O_STN01 7_TAKE0 15.mkv	06:53:14	06:56:17	2022-09-23	sandy mud and burrows	Remotely Operated Vehicle	_ROV	00:00:01	06:53:15	00:03:00	06:56:15	00:02:59	ENVISION	55.181920	-1.366270	55.182100	-1.365110	50	76m
STN018	A1	1	BB_VIDE O_STN01 8_TAKE0 16.mkv	07:19:49	07:22:22	2022-09-23	sandy mud with some burrows	Remotely Operated Vehicle	_ _ROV	00:00:02	07:19:51	00:02:32	07:22:23	00:02:30	ENVISION	55.190740	-1.355850	55.191010	-1.355070	53	59m
STN019	A1	1	BB_VIDE O_STN01 9_TAKE0 17.mkv	07:46:01	07:48:44	2022-09-23	muddy sand, lots of worm tubes	Remotely Operated Vehicle	_ROV	00:00:08	07:46:09	00:02:40	07:48:49	00:02:32	ENVISION	55.203220	-1.350410	55.203640	-1.349860	51	59m
STN020	A1	1	BB_VIDE O_STN02 0_TAKE0 18.mkv	08:15:09	08:18:10	2022-09-23	muddy sand with shells	Remotely Operated Vehicle	_ROV	00:00:32	08:15:41	00:03:01	08:18:42	00:02:29	ENVISION	55.216280	-1.336870	55.216860	-1.336450	51	70m
STN021	A1	1	O_STN02 1_TAKE0 19.mkv	08:41:49	08:45:38	2022-09-23	sand, mud, cobbles.	Remotely Operated Vehicle	_ROV	00:00:01	08:41:50	00:00:00	08:41:50	00:03:38	ENVISION	55.236980	-1.320960	55.237500	-1.320470	51	65m
STN022	A1	1	BB_VIDE O_STN02 2_TAKE0 20.mkv	09:00:15	09:02:55	2022-09-23	sandy mud	Remotely Operated Vehicle	_ROV	00:00:01	09:00:16	00:00:00	09:00:16	00:02:38	ENVISION	55.256900	-1.309020	55.257440	-1.308940	55	61m
STN023	A1	1	BB_VIDE O_STN02 3_TAKE0 21.mkv	09:56:42	10:00:07	2022-09-23	sandy mud	Remotely Operated Vehicle	_ROV	00:00:02	09:56:44	00:03:25	10:00:09	00:03:23	ENVISION	55.278330	-1.290870	55.278800	-1.290730	61	53m

STN024	A1	1	BB_VIDE O_STN02 4_TAKE0 22.mkv	10:22:06	10:24:48	2022-09-23	sandy mud, mysids	Remotely Operated Vehicle	_ROV	00:00:02	10:22:08	00:02:42	10:24:50	00:02:40	ENVISION	55.302140	-1.271700	55.302520	-1.271300	64	49m
STN025	A1	1	BB_VIDE O_STN02 5_TAKE0 24.mkv	11:22:49	11:26:31	2022-09-23	sandy mud, bits of shell, mysids	Remotely Operated Vehicle	_ROV	00:00:06	11:22:55	00:03:39	11:26:34	00:03:33	ENVISION	55.345200	-1.242210	55.344970	-1.241490	65	52m
STN026	A1	1	BB_VIDE O_STN02 6_TAKE0 25.mkv	11:51:44	11:54:59	2022-09-23	sandy mud, Sea pens	Remotely Operated Vehicle	_ROV	00:00:04	11:51:48	00:03:13	11:55:01	00:03:09	ENVISION	55.366970	-1.221200	55.366430	-1.220490	75	75m
STN027	A1	1	BB_VIDE O_STN02 7_TAKE0 23.mkv	11:01:22	11:05:00	2022-09-23	sandy mud	Remotely Operated Vehicle	_ROV	00:00:03	11:01:25	00:03:35	11:05:00	00:03:32	ENVISION	55.324370	-1.253740	55.324380	-1.253210	67	34m
STN028	A1	1	BB_VIDE O_STN02 8_TAKE0 26.mkv	12:13:59	12:16:45	2022-09-23	sandy mud, burrows, pennatula	Remotely Operated Vehicle	_ROV	00:00:04	12:14:03	00:02:46	12:16:49	00:02:42	ENVISION	55.382960	-1.202500	55.382100	-1.201470	75	116m
			BB_VIDE				sandy	Dometelu													
STN029	A1	1	9_TAKE0 30.mkv	15:07:18	15:10:06	2022-09-23	burrows, pennatula	Operated Vehicle	_ROV	00:00:02	15:07:20	00:02:23	15:09:43	00:02:21	ENVISION	55.470810	-1.102650	55.469590	-1.102010	95	141m

STN038	A1	1	BB_VIDE O_STN03 8_TAKE0 29.mkv	14:15:59	14:19:25	2022-09-23	sandy mud with some burrows	Remotely Operated Vehicle	_ROV	00:00:01	14:16:00	00:03:28	14:19:28	00:03:27	ENVISION	55.438990	-1.135120	55.437750	-1.134400	92	145m
STN045	A2	1	BB_VIDE O_STN04 5_TAKE0 28.mkv	13:42:13	13:45:37	2022-09-23	sandy mud with some burrows	Remotely Operated Vehicle	_ROV	00:00:06	13:42:19	00:03:22	13:45:41	00:03:16	ENVISION	55.411000	-1.172600	55.410150	-1.172140	86	99m

EUNIS Broads cale Habitat	MNCR Code	MNCR Classifi cation Descrip tor (Exact Copy)	Second ary MNCR Code (Mosaic Habitats Only)	Second ary MNCR Classifi cation Descrip tor (Exact Copy - Mosaic Habitats Only)	Habitat FOCI - only for SoS	Annex 1 Habitats	OSPAR Habitat	Total burrow density	>3cm Burrow density	Determi nedBy	·	NMBAQ C Image Quality	COMME NTS & Human activitie s	COMPL ETED BY:-	Internal QC by:-
Subtidal Sand	SS.SSa	Sublittoral s	sands and n		Subtidal Sands and Gravels			-	-	JC	_IQ1	Good		JC	AB
Moderate Energy Circalittora I Rock	CR.MCR	Moderate e	energy circal	ittoral rock		Stony reef		_	_	JC	_IQ2	Good		JC	АВ
Subtidal Sand	SS.SSa	Sublittoral s	sands and m	nuddy sands	Subtidal Sands and Gravels			-	-	JC	_ _IQ3	Poor	variable height of camera, bit dark	JC	AB
Subtidal Sand	SS.SSa	Sublittoral s	sands and n		Subtidal Sands and Gravels			-	-	JC	_IQ4	Good		JC	AB
Moderate Energy Circalittora I Rock	CR.MCR. EcCr.FaAl Cr.Flu	Flustra foliacea on slightly scoured silty circalittoral rock				Bedrock reef		-	-	JC	_IQ5	Good	some thick silt veener on bedrock	JC	AB
Subtidal Sand	SS.SSa.C MuSa	Circalittoral	muddy san		Subtidal Sands and Gravels			-	-	JC	_IQ6	Good	suspende d sediment	JC	AB

Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es		Sea-pen and burrowing megafaun a communiti es	0.285714	0.171429	JC	_IQ7	Good	Suspende d sediment. couple of small burrows	JC	АВ
Subtidal Sand	SS.SSa.C MuSa	Circalittoral	l muddy san	Subtidal Sands and Gravels			-	-	JC	_IQ8	Poor	suspende d sediment and fast camera movement	JC	AB
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater			0.178082	0.068493	JC	_IQ9	Poor	suspende d sediment and fast camera movement	JC	AB
Moderate Energy Circalittora I Rock	CR.MCR	Moderate ε	ergy circal		Stony reef		-	-	JC	_IQ10	Good	patch of sandy mud around 2:30-2:55	JC	AB
Moderate Energy Circalittora I Rock	CR.MCR	Moderate ε	ergy circal		Bedrock reef		-	-	JC	_IQ11	Poor	suspende d sediment	JC	AB
Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es		Sea-pen and burrowing megafaun a communiti es	0.16	0.12	JC	_IQ12	Poor	suspende d sediment. Potential thick sand veneer (some outcroppin g rock). Assumed distance 50m.	JC	АВ
Moderate Energy Circalittora I Rock	CR.MCR	Moderate e	∍nergy circal		Stony reef		-	-	JC	_IQ13	Good	bit dark	JC	AB

Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es	Sea-pen and burrowing megafaun a communiti es	0.157895	0.157895	JC	_IQ14	Poor	suspende d sediment and camera crash. Not fine mud.	JC	AB
Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es	Sea-pen and burrowing megafaun a communiti es	1.02	0.4	JC	_IQ15	Poor	suspende d sediment, poor lighting. Assumed distance 50m.	JC	АВ
Subtidal Mud	SS.SMu.C SaMu	Circalittora I sandy mud		Mud Habitats in Deepwater		0.157895	0.039474	JC	_IQ16	Poor	suspende d sediment, poor lighting, fast camera. Not fine sediment.	JC	АВ
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater		0.220339	0.050847	JC	_IQ17	Poor	dark, suspende d sediment	JC	AB
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater		0.288136	0.016949	JC	_IQ18	Good	suspende d sediment	JC	AB
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater		0.171429	0	JC	_IQ19	Poor	dark, suspende d sediment	JC	AB
Subtidal Mixed Sediment	SS.SMx.C Mx	Circalittoral	l mixed sedi			-	-	JC	_IQ20	Poor	dark, suspende d sediment	JC	АВ
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater		0.131148	0.081967	JC	_IQ21	Poor	dark, suspende d sediment	JC	AB
Subtidal Mud	SS.SMu.C SaMu	Circalittoral	l sandy mud	Mud Habitats in Deepwater		0.283019	0.075472	JC	_IQ22	Good	some suspende d sediment	JC	AB

											some		
											suspende		
											a		
											u		
		Circalittora									sediment		
											and		
		i sandy									mysids.		
		mud									Unidentifia		
				Mud							ble red		
Subtidal	9 9 9 9 9 C			Habitate in							possible		
Sublidar	SS.Siviu.C								1000		possible		
iviua	Salviu			Deepwater		0.306122	0.061224	JC	_1Q23	Good	laxa.	JC	АВ
											lots of		
											suspende		
											d		
											sediment.		
		Circalittora									Not fine		
		l sandy									mud		
		mud											
											Unidentifia		
				Mud							ble red		
Subtidal	SS.SMu.C			Habitats in							possible		
Mud	SaMu			Deepwater		0.153846	0.038462	JC	IQ24	Poor	taxa	JC	AB
											lots of		
											suspende		
		Circalittora									d		
		Isandy									a		
		mud		Mud							sediment.		
Subtidal	SS.SMu.C	muu		Habitats in							Not fine		
Mud	SaMu			Deepwater		0.08	0	JC	_IQ25	Poor	mud	JC	AB
											lots of		
		Seanens									suspende		
		oeapens		Sea Pen	Sea-nen						d		
				and	ocd-pcn						andimont		
		burrowing									seuiment,		
		megafaun		Burrowing	burrowing						whiist		
		a in		Megafaun	megataun						camera		
	SS.SMu.C	circalittoral		а	а						adjusting.		
Subtidal	FiMu.Spn	fine mud		Communiti	communiti						Not fine		
Mud	Mea			es	es	0.941176	0.294118	JC	IQ26	Good	mud	JC	AB
	5					010 12270	0.20.220						
		Seapens		Sea Pen	Sea-nen								
		and		and	oca-pen								
		burrowing											
		mogofoun		Burrowing	burrowing								
		inegalaun		Megafaun	megafaun								
	SS.SMu.C	ain		а	а								
Subtidal	FiMu.Spn	circalittoral		Communiti	communiti						mysid		
Mud	Mea	fine mud		es	es	0 155172	0 112069	JC	IQ27	Good	swarm	JC	АВ
						0.133172	0.112005				mysid		
											sworm		
											Swarri.		
		Sublittoral									Over		
		ochocivo									exposed		
		conesive									in places.		
		inud and									Unidentifia		
		sandy									ble		
		mud									pink/red		
		communiti											
		es		Mud									
				IVIUd							in mua		
Subtidal				Habitats in							throughout		
Mud	SS.SMu			Deepwater		0.12766	0.06383	JC	_IQ28	Very Poor		JC	AB

Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es	Sea-pen and burrowing megafaun a communiti es	0.2	0.110345	JC	_IQ29	Poor	mysids	JC	AB
Subtidal Mud	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittoral fine mud		Sea Pen and Burrowing Megafaun a Communiti es	Sea-pen and burrowing megafaun a communiti es	0.212121	0.131313	JC	_IQ30	Good	suspende d sediment	JC	AB

Phase 2. DDV Images and Stills Proforma

	General Metadata	Description	Your Data and Information
	Project Name	The nationally/internationally accepted version of the project name.	Berwick Bank Underwater Imagery
	Project Code	Provide a code to uniquely identify the project and allow links to be made between the tables. It is recommended that the website of organisation responsible is used followed by a unique code which should reflect the code used by the funding organisation where possible.	2022-1014
t	Project Start Date	The date that the project started which is from when the funding was in place to start. Use the 1st of the month if the exact date is not known.	2022-03-29
Projec Metada	Project End Date	The date that the project finished or is due to finish. Use the 1st of the month if the exact date is not known.	
	Project Website	If a project website exists give the address. This should be the web address of the environmental surveys and not, in the case of impact assessments, the engineering development.	
	Project Metadata URL	A URL which links to the metadata for the project. It is recommended that the website of organisation responsible for the work is used followed by a unique code which should reflect the code used by the funding organisation where possible.	
ŋ	Survey Name	Title of the survey	Berwick Bank Phase 2 Underwater Imagery Survey
etadat	Survey Run By	Name the organisation(s) running the survey	NPC/ENVISION
ey Mé	Survey Type	Give the type of survey	Underwater Imagery
Surv	Survey Abstract	Brief description of the purpose of the survey and types of measurements that were made for the survey.	

Cruise Code	A unique code for the survey to allow	1215S
	links to be built between this and sample	
	event data. It is recommended that the	
	website of organisation responsible for	
	the work is used followed by a unique	
	code which should reflect the code used	
	by the funding organisation where	
	possible	
Survey Metadata URI	A URL which links to the metadata for	
	the survey. It is recommended that the	
	website of organisation responsible for	
	the work is used followed by a unique	
	code which should reflect the code used	
	by the funding organization where	
	by the funding organisation where	
Dete Originator	The experience who has expected the	
Data Originator	The organisation who has created the	ENVISION
	data set. If the organisation is not in	
	European Directory of Marine	
	Organisations (EDMO) please contact	
	enquiries@oceannet.org to add it. If a	
	person who is not associated with any	
	organisation generated the data then	
	please provide the name in the sample	
	event table.	
Data Owner	Organisation that owns the data set. If	
	the organisation is not in EDMO please	
	contact enquiries@oceannet.org to add	
	it.	
Survey Start Date	The date and time that the survey	2023-02-15
	started.	
Survey End Date	The date and time that the survey	2023-03-21
	ended. May be left null if the survey is	
	onaoina.	
Data Acquisition Time Zone	Give the time zone in which the date and	UTC
	time of the data acquisition is made	
	(preferably Coordinated Universal Time	
	(UTC))	
Spatial Coordinate Reference System	Spatial coordinate reference system.	
	Describes the system of spatial	
	referencing. i.e. the datum used to	
	supply the decimal latitudes and	
	longitudes. There are additional fields to	
	indicate the datum of the original data if	
	the coordinates have been transformed.	

Original Coordinate Reference System (if different)	Datum of original coordinates if different from the one used to supply data	
Transformation	If transformation is undertaken to create decimal degrees	
Position Fix, Method and Source	Please provide method and source of the of the position fix instrument	
Horizontal Accuracy (m)	How accurate the spatial positions are likely to be.	
Depth Reference	Give the reference to which the depth has been calculated e.g. Ordnance Datum Newlyn; Highest Astronomical Tide. Mandatory if seabed depths are given for each sample.	
Vertical Positional Accuracy (m)	How accurate the vertical resolution is. Must be provided if seabed depths are given.	
Platform Type	The platform type (e.g. Research Vessel) from which the sampling device was deployed.	
Platform Name	Mandatory if a vessel was used for the survey. The name of the ship. If your ship is not on the list please contact accessions@ices.dk	
Marine Recorder Survey ID	Enter the Marine Recorder Survey number if the survey is entered into Marine Recorder. This is a unique number which is assigned by Marine Recorder on entering survey information, and starts with the letters MR and is then often followed by the acronym of the organisation which owns the survey	
Mesh Guide	Enter the MESH GUID number for the survey. This is the Globally unique identifier (GUI) of the habitat map. It consists of 2-letter country code (which corresponds to ISO3166-1) plus 6 digits. Each GUI must correspond to a record in the metadata catalogue. A metadata template can be downloaded from the MESH website, www.searchmesh.net.	
cruiseReportReference	Cruise report or boat log reference if applicable.	

surveyReportReference	Survey report reference if applicable.	
confidentiality	Note if the survey is confidential. If not noted the data will be assumed to be	
	releasable to the public	

	Gear Metadata	Description	Your Data and Information
	Gear Type	Specific sampling equipment used	Remotely Operated Vehicle
	Method ID Code	CruiseCode_GearCode	_ROV
	Sampling Device	Category of sampling device used	311 Cameras
tion	Camera Height (m)	The distance in metres from the seabed to the camera. This can be an average height along a transect or the height at which an image is taken with a drop- down camera. If an average, please specify a range (if known) in methodNotes.	Variable
od Informa	Camera Make & Model	The make and model(s) of the camera(s), lenses and housing used to collect the data.	QYSEA FIFISH V6 EXPERT
Aeth	Device Configuration	The device configuration of the video tow set-up including: focal range, scaling lasers, filters used, mounting angle, dGPS used, on-board monitoring facility, etc. with particular reference to any custom modifications made.	4K video footage with built in LEDs and laser pointers, approximately 10cm apart
	Video/Stills Format & Compression	The format of the video/stills data collected and the compression type used.	.mkv, .jpg
	Transect Width (m) (Video Only)	The average width of the transect or width of video swath, if a video transect/tow. If standardised for gear record here, otherwise ignore.	
	Transect Length (m) (Video Only)	The length of the transect or width of video swath, if a video transect/tow is a standardised length, record here, otherwise ignore this field.	
	Vessel Speed of Travel	Averaged speed at which the observer or vessel travelled	

Stills File Format	The file format of the stills data collected	.jpg
Camera Sledge Make	Make of camera sledge used	
Lights Make & Model	Make and model of lights used	2 x 3000 Lumen LED headlights: variable intensity via controller
Calibration Notes	To include white balancing, laser scaling, etc.	
Actual Laser Width	Scaling laser width (mm)	10cm
Actual Laser Height	Scaling laser height (mm), where using lasers in a box or vertical orientation.	
Processing Notes	Describe any post processing that was undertaken to the video and stills.	
Protocols Used	SOPs/Protocols used. Any written methodology used should be referenced and linked. If the methodology is not referenced then provide a full description here.	
Replicates	If replicates were taken please indicate number per sample.	
Analytical Laboratory	The laboratory/organisation(s) (with EDMO record ID) that analysed the samples if different from the originator identified in the general metadata. Contact MEDIN to add an organisation to this list	

Analytical Personnel	Names of the personnel who were
Analytical Fersonner	investigation and become the complex and
	involved in analysing the samples and
	their role in the analysis.
Method Images	Reference any images of equipment set
	up
Method Notes	Any further notes on sample analysis
	that may be of relevance.
QC Scheme	Description of any quality control
	scheme that samples were audited
	under during the analysis
	And further notice on group lite control
QC Method Notes	Any further notes on quality control
	scheme that may be of relevance.

Station Number	Image / Still Sample Ref	Metadat a Fix Time (hh:mm :ss)	Date (уууу- mm-dd)	BriefHa bitatDes cription (Physic al & biotic)	Method	Method D	l Survey Run By	Latitude (DecDeg)	Longitu de (DecDe g)	Still Number	Depth (m)	Pebbles 4mm to 64mm	Shells_ Empty	Shells_ LiveMo diolus	Granule 2mm to 4mm	Shell_2 mm to 16mm	Sand 0.063m m to 2mm	Mud less than 0.063m m	Total %	AutoEu nisGrou p	AutoRo ck	Broads cale Habitat - only for SoS waters	Habitat FOCI - only for SoS	OSPAR Habitat	MNCR Code	MNCR Classifi cation Descrip tor (Exact Copy)	Determi nedBy	NMBAQ C Image Quality	COMME NTS & Human activitie s	COMPL ETED BY:-	Internal QC by:-
STN002	BB_STILL _STN002 _TAKE00 5_01	11:58:25	15/02/2023	Mud with burrows	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171815	-1.439962	1	44.0						70	30	100	mud and s	iq	Subtidal Mud	Sea Pen and Burrowing Megafaun a Communit ies	Sea-pen and burrowing megafaun a communiti es	SS.SMu.C FiMu.Spn Meg	Seapens and burrowing megafaun a in circalittora I fine mud	EB	Poor	Suspende d sediment and dark	EB	
STN002	BB_STILL _STN002 _TAKE00 5_02	11:58:25	15/02/2023	Mud	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171815	-1.439962	2	44.0						70	30	100	mud and s	Ğ	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Suspende d sediment and dark	EB	
STN002	BB_STILL _STN002 _TAKE00 5_03	11:58:25	15/02/2023	Mud with a fish	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171815	-1.439962	3	44.0						70	30	100	mud and s	Ğ	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN006	BB_STILL _STN006 _TAKE00 3_01	11:31:47	15/02/2023	Sandy mud with turf and hydroids	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171212	-1.408457	1	48.0					5	65	30	100	mud and s	ic.	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN006	BB_STILL _STN006 _TAKE00 3_02	11:31:47	15/02/2023	Sandy mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171212	-1.408457	2	48.0					5	65	30	100	mud and s	ić.	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN006	BB_STILL _STN006 _TAKE00 3_03	11:31:47	15/02/2023	Sandy mud with a crab	Remotely Operated Vehicle	_ROV	ENVISIO N	55.171212	-1.408457	3	48.0					5	65	30	100	mud and s	iç	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN008	BB_STILL _STN008 _TAKE00 6_01	12:27:28	15/02/2023	Rippled sand	Remotely Operated Vehicle	_ROV	ENVISIO N	55.161073	-1.487660	1	18.0					1	99		100	sand and i	7	Subtidal Sand	Subtidal Sands and Gravels		SS.SSa	Sublittoral sands and muddy sands	EB	Good		EB	
STN008	BB_STILL _STN008 _TAKE00 6_02	12:27:28	15/02/2023	Rippled sand	Remotely Operated Vehicle	_ROV	ENVISIO N	55.161073	-1.487660	2	18.0					1	99		100	sand and i	7	Subtidal Sand	Subtidal Sands and Gravels		SS.SSa	Sublittoral sands and muddy sands	EB	Good		EB	
STN008	BB_STILL _STN008 _TAKE00 6_03	12:27:28	15/02/2023	Rippled sand	Remotely Operated Vehicle	_ROV	ENVISIO N	55.161073	-1.487660	3	18.0					1	99		100	sand and i	7	Subtidal Sand	Subtidal Sands and Gravels		SS.SSa	Sublittoral sands and muddy sands	EB	Good		EB	
STN013	BB_STILL _STN013 _TAKE00 2_01	11:15:22	15/02/2023	Sandy mud with some shell and a sabellid worm	Remotely Operated Vehicle	_ROV	ENVISIO N	55.177117	-1.406463	1	50.0					10	65	25	100	mixed sed	i.	Subtidal Mixed Sediment			SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good	Paguroide a clear in video	EB	СА
STN013	BB_STILL _STN013 _TAKE00 2_02	11:15:22	15/02/2023	Sand and mud with a cobble, some shell, Alcyonium and a flatfish	Remotely Operated Vehicle	_ROV	ENVISIO N	55.177117	-1.406463	2	50.0					5	40	25	100	mixed sed	i Rock	Moderate Energy Circalittor al Rock			CR.MCR	Moderate energy circalittora I rock	EB	Good	Only patch of rock in video, not stony reef as no extent	EB	
STN013	BB_STILL _STN013 _TAKE00 2_03	11:15:22	15/02/2023	Sandy mud with some shell	Remotely Operated Vehicle	_ROV	ENVISIO N	55.177117	-1.406463	3	50.0					10	65	25	100	mixed sed	i.	Subtidal Mixed Sediment			SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good		EB	
STN030	BB_STILL _STN030 _TAKE01 3_01	13:06:49	21/03/2023	Mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.538210	-1.029020	1	101.0						70	30	100	mud and s	ić.	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	

STN030	BB_STILL _STN030 _TAKE01 3.02	13.06.49	21/03/2023	Mud with	Remotely Operated	BOV	ENVISIO	55 538210	-1 020020 (2 101	0				70	30	100	mud and		Subtidal	Mud Habitats in Deepwate	SS.SMu.C	Circalittor al fine mud	FB	Poor	Dark, water	FR	
STN030	BB_STILL _STN030 _TAKE01 3 03	13:06:49	21/03/2023	Mud with turf and chaetopte idae	Remotely r Operated Vehicle	ROV	ENVISIO	55.538210	-1.029020	3 101	.0				70	30	100	mud and	Sa	Subtidal	Mud Habitats in Deepwate	SS.SMu.C	Circalittor al fine mud	EB	Good		EB	
STN031	BB_STILL _STN031 _TAKE01 2 01	12:47:36	21/03/2023	Mud with	Remotely Operated Vehicle	ROV	ENVISIO	55.556580	-1.008460	1 102	.0				70	30	100	mud and	54	Subtidal	Mud Habitats in Deepwate	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	CA
STN031	BB_STILL _STN031 _TAKE01 2 02	12:47:36	21/03/2023	Mud with	Remotely Operated Vehicle	ROV	ENVISIO N	55.556580	-1.008460	2 102	.0				70	30	100	mud and	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	
STN031	BB_STILL _STN031 _TAKE01 2_03	12:47:36	21/03/2023	Mud and sand	Remotely Operated Vehicle		ENVISIO N	55.556580	-1.008460	3 102	.0				80	20	100	mud and	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	СА
STN032	BB_STILL _STN032 _TAKE01 1_01	12:29:38	21/03/2023	Mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.575640	-0.987260	1 92.0)				70	30	100	mud and	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark at top	EB	
STN032	BB_STILL _STN032 _TAKE01 1_02	12:29:38	21/03/2023	Mud with a flatfish	Remotely Operated Vehicle	_ROV	ENVISIO N	55.575640	-0.987260 2	2 92.0)				70	30	100	mud and	St	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark at top	EB	
STN032	BB_STILL _STN032 _TAKE01 1_03	12:29:38	21/03/2023	Mud with a burrow	Remotely Operated Vehicle	_ROV	ENVISIO N	55.575640	-0.987260 ;	3 92.0)				70	30	100	mud and	Sa	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark at top	EB	СА
STN033	BB_STILL _STN033 _TAKE01 0_01	12:10:12	21/03/2023	Mud with a fish and pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.609230	-0.991640	1 83.0)				70	30	100	mud and	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark at edges	EB	
STN033	BB_STILL _STN033 _TAKE01 0_02	12:10:12	21/03/2023	Mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.609230	-0.991640	2 83.0)				70	30	100	mud and	Sá	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN033	BB_STILL _STN033 _TAKE01 0_03	12:10:12	21/03/2023	Mud with a hermit crab	Remotely Operated Vehicle	_ROV	ENVISIO N	55.609230	-0.991640 ;	3 83.0)				70	30	100	mud and	Sá	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN034	BB_STILL _STN034 _TAKE00 9_01	11:52:07	21/03/2023	Sand, pebbles and cobbles with turf, crust and an anemone	Remotely Operated Vehicle	_ROV	ENVISIO N	55.640570	-0.999910	1 85.0) 20)			60	10	100	mixed sea	di	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Poor	Blurry and dark	EB	
STN034	BB_STILL _STN034 _TAKE00 9_02	11:52:07	21/03/2023	Sand, pebbles and cobbles with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.640570	-0.999910 2	2 85.0) 10)			60	10	100	mixed sec	di	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good		EB	
STN034	BB_STILL _STN034 _TAKE00 9_03	11:52:07	21/03/2023	Sand, pebbles and cobbles with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.640570	-0.999910 ;	3 85.0) 20)			50	10	100	mixed sec	di	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Poor	Blurry and dark	EB	СА
STN035	BB_STILL _STN035 _TAKE00 8_01	11:33:27	21/03/2023	Mud with a sabellid worm and turf	Remotely I Operated Vehicle	_ROV	ENVISIO N	55.667430	-0.997550	1 89.()				70	30	100	mud and	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	
STN035	BB_STILL _STN035 _TAKE00 8_02	11:33:27	21/03/2023	Mud with a chaetopte idae	Remotely r Operated Vehicle	_ROV	ENVISIO N	55.667430	-0.997550 2	2 89.0)				70	30	100	mud and	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	

				1	T		1																		1		
STN035	BB_STILL _STN035 _TAKE00 8 03	11:33:27	21/03/2023	Mud and sand	Remotely Operated Vehicle	ROV	ENVISIO N	55.667430	-0.997550 3	89.0			80	20	100	mud and s	id.	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		ЕВ	
	BB_STILL _STN036 _TAKE01				Remotely Operated		ENVISIO											Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al fine mud			Dark, water		
STN036	4_01 BB_STILL	13:26:48	21/03/2023	Mud	Vehicle	ROV	N	55.509740	-1.062760 1	98.0			70	30	100	mud and s	č	Mud	r Mud		FiMu	Circalittor	EB	Poor	column	EB	CA
STN036	_STN036 _TAKE01 4_02	13:26:48	21/03/2023	Mud	Operated Vehicle	_ROV	ENVISIO N	55.509740	-1.062760 2	98.0			70	30	100	mud and s	ić.	Subtidal Mud	Habitats in Deepwate r		SS.SMu.C FiMu	al fine mud	EB	Poor	Dark, water column	EB	
STNU36	BB_STILL _STN036 _TAKE01	13-26-49	21/03/2023	Mud with	Remotely Operated	ROV	ENVISIO	55 500740	1 062760 3	08.0			70	30	100	roud and a		Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al fine mud	ER	Cood		ER	
311030	BB_STILL _STN037	13.20.40	21/03/2023	Sand and mud with	Remotely			33.309740	-1.002700 3	50.0			10	30	100	muu anu s	i c		Mud Habitats in			Circalittor al fine		6000		LD	
STN037	_TAKE00 7_01	11:13:54	21/03/2023	pennatula and turf	Operated Vehicle	_ROV	ENVISIO N	55.698520	-1.002050 1	84.0			80	20	100	mud and s	Ìć	Subtidal	Deepwate r		SS.SMu.C FiMu	mud	EB	Good		EB	
STN037	BB_STILL _STN037 _TAKE00 7,02	11-12-54	21/03/2023	Sand and mud with pennatula	Remotely Operated	POV	ENVISIO	55 608520	1 002050 2	84.0			80	20	100	roud and a		Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al fine mud	ER	Cood		ER	
511037	BB STILL	11.15.54	21/03/2023	Sand and	Venicie			33.090320	-1.002050 2	04.0			00	20	100	mud and s	i d	Muu	Mud			Circolittor		GOOd	<u> </u>		
STN037	_STN037 _TAKE00 7_03	11:13:54	21/03/2023	chaetopter idae and turf	r Remotely Operated Vehicle	_ROV	ENVISIO N	55.698520	-1.002050 3	84.0			80	20	100	mud and s	č	Subtidal Mud	Habitats in Deepwate r		SS.SMu.C FiMu	al fine mud	EB	Good		EB	
	BB_STILL _STN039 _TAKE00			Mud with a	Remotely Operated		ENVISIO											Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al fine mud					
STN039	6_01	10:55:30	21/03/2023	pennatula Mud with	Vehicle	_ROV	N	55.726460	-1.000160 1	90.0			70	30	100	mud and s	òć	Mud	r		FiMu		EB	Good		EB	
STN039	BB_STILL _STN039 _TAKE00 6 02	10:55:30	21/03/2023	a pennatula and sabellid worm	Remotely Operated Vehicle	ROV	ENVISIO N	55.726460	-1.000160 2	90.0			70	30	100	mud and s		Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
	BB_STILL			Mud with	Demetalu														Sea Pen and Burrowing Megafaun	Sea-pen and burrowing megafaun	00.004.0	Seapens and burrowing megafaun a in					
STN030	_TAKE00	10.55.30	21/03/2023	pennatula	Operated	POV	ENVISIO	55 726460	1 000160 3	00.0			70	30	100	mud and a		Subtidal	a Communit	a communiti	FiMu.Spn	circalittora I fine mud	ER	Cood		ER	
311039	0_03	10.55.50	21/03/2023	Sandy mud with a squat	Venicle			55.720400	-1.000100 3	90.0			70	30	100	mud and s		Muu	les	es	Meg	Circalittor	ED	Good		ED	
STN040	BB_STILL _STN040 _TAKE00 5_01	10:37:46	21/03/2023	lobster, hermit crab and pennatula	Remotely Operated Vehicle	ROV	ENVISIO N	55.750250	-1.008470 1	86.0			80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r		SS.SMu.C FiMu	al fine mud	EB	Poor	Dark, water column	EB	
	BB_STILL			Sandy mud with		<u> </u>													Mud			Circalittor					
STN040	_STN040 _TAKE00 5_02	10:37:46	21/03/2023	a hermit and a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.750250	-1.008470 2	86.0			80	20	100	mud and s	i.	Subtidal Mud	Habitats in Deepwate r		SS.SMu.C FiMu	al fine mud	EB	Poor	Dark, water column	EB	
	BB_STILL _STN040 _TAKE00			Sandy mud with a	Remotely Operated		ENVISIO											Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al fine mud					
STN040	5_03	10:37:46	21/03/2023	pennatula	Vehicle	_ROV	N	55.750250	-1.008470 3	86.0			80	20	100	mud and s	id.	Mud	Mud		FiMu	Oint I'll	EB	Good	<u> </u>	EB	
STN041	_STN041 _TAKE00 4_01	10:19:04	21/03/2023	Sand and mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.777270	-1.012090 1	77.0			 80	20	100	mud and s	ìć	Subtidal Mud	Habitats in Deepwate r		SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
	BB_STILL _STN041 TAKE00			Sand and mud with	Remotely Operated		ENVISIO											Subtidal	Mud Habitats in Deepwate		SS.SMu.C	Circalittor al sandy mud					
STN041	4_02	10:19:04	21/03/2023	turf	Vehicle	_ROV	Ν	55.777270	-1.012090 2	77.0			80	20	100	mud and s	id.	Mud	r		SaMu		EB	Good		EB	CA

STN041	BB_STILL _STN041 _TAKE00 4 03	10:19:04	21/03/2023	Sand and mud with a pennatula	Remotely Operated Vehicle	ROV	ENVISIO N	55.777270	-1.012090	3 77.0			80	20	100	mud and s	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN042	BB_STILL _STN042 _TAKE00 3_01	10:02:15	21/03/2023	Sand and mud with a fish and hermit	Remotely Operated Vehicle	_ROV	ENVISIO N	55.799300	-1.005900	1 84.0			80	20	100	mud and s	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN042	BB_STILL _STN042 _TAKE00	-	24/02/2022	Sand and mud with a hermit and chaetopter	Remotely r Operated	BOV	ENVISIO	55 700200	1.005000	2 84.0			80	20	100			Subtidal	Mud Habitats in Deepwate	SS.SMu.C	Circalittor al fine mud	EB	Good		ER	
STN042	BB_STILL _STN042 _TAKE00 3_03	- 10:02:15	21/03/2023	Sand and mud with a fish	Remotely Operated Vehicle	_ROV	ENVISIO N	55.799300	-1.005900	3 84.0			80	20	100	mud and s	Sé	Subtidal	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	
STN043	BB_STILL _STN043 _TAKE00 2_01	09:42:17	21/03/2023	Sand and mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.829567	-1.011383	1 85.0			80	20	100	mud and s	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN043	BB_STILL _STN043 _TAKE00 2_02	09:42:17	21/03/2023	Sand and mud with a hermit and turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.829567	-1.011383	2 85.0			80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN043	BB_STILL _STN043 _TAKE00 2_03	09:42:17	21/03/2023	mud with a hermit, pennatula and turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.829567	-1.011383	3 85.0			80	20	100	mud and s	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	
STN044	BB_STILL _STN044 _TAKE00 1_01	09:20:44	21/03/2023	Sandy mud with pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.847950	-1.024440	1 86.0			75	25	100	mud and s	St	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		JC	
STN044	BB_STILL _STN044 _TAKE00 1_02	09:20:44	21/03/2023	Sandy mud with a lanice	Remotely Operated Vehicle	_ROV	ENVISIO N	55.847950	-1.024440	2 86.0			75	25	100	mud and s	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		JC	
STN044	BB_STILL _STN044 _TAKE00 1_03	09:20:44	21/03/2023	Sandy mud with a hermit crab	Remotely Operated Vehicle	_ROV	ENVISIO N	55.847950	-1.024440	3 86.0			75	25	100	mud and s	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		JC	
STN064	BB_STILL _STN064 _TAKE00 4_01	08:34:57	16/02/2023	Sand and mud with Flustra	Remotely Operated Vehicle	_ROV	ENVISIO N	55.945683	-1.081750	1 72.0			80	20	100	mud and s	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN064	BB_STILL _STN064 _TAKE00 4_02	08:34:57	16/02/2023	Sand and mud with a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.945683	-1.081750	2 72.0			80	20	100	mud and s	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	СА
STN064	BB_STILL _STN064 _TAKE00 4_03	08:34:57	16/02/2023	mud with a chaetopter us	Remotely r Operated Vehicle	_ROV	ENVISIO N	55.945683	-1.081750	3 72.0			80	20	100	mud and s	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN077	BB_STILL _STN077 _TAKE01 2_01	12:00:33	16/02/2023	mud with chaetopter idae and a flatfish	Remotely Operated Vehicle	_ROV	ENVISIO N	56.134273	-1.570320	1 71.0			80	20	100	mud and s	Sa	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN077	BB_STILL _STN077 _TAKE01 2_02	12:00:33	16/02/2023	Sand and mud with a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	56.134273	-1.570320	2 71.0			80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN077	BB_STILL _STN077 _TAKE01 2_03	12:00:33	16/02/2023	Sand and mud with alcyonium	Remotely Operated Vehicle	_ROV	ENVISIO N	56.134273	-1.570320	3 71.0			80	20	100	mud and s	Si	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	

STN079	BB_STILL _STN079 _TAKE01 3_01	12:28:20	16/02/2023	Mud and sand with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	56.092177	-1.480985	1 72.0					80	20	100	mud and s	1¢	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	
STN079	BB_STILL _STN079 _TAKE01 3_02	12:28:20	16/02/2023	Mud and sand with pennatula and a hermit crab	Remotely Operated Vehicle	_ROV	ENVISIO N	56.092177	-1.480985	2 72.0					80	20	100	mud and s	ic.	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Poor	Dark, water column	EB	CA
STN079	BB_STILL _STN079 _TAKE01 3_03	12:28:20	16/02/2023	Mud and sand with pennatula and a hermit crab	Remotely Operated Vehicle	_ROV	ENVISIO N	56.092177	-1.480985	3 72.0					80	20	100	mud and s	ŝć	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good		EB	
STN080	BB_STILL _STN080 _TAKE01 4 01	12:47:52	16/02/2023	Sand, a cobble and shell with Flustra and turf	Remotely Operated Vehicle	ROV	ENVISIO	56.071255	-1.438578	1 62.0				20	80		100	coarse sed	2	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	EB	Poor	Dark, water column	EB	
STN080	BB_STILL STN080 _TAKE01 4 02	12:47:52	16/02/2023	Sand, a cobble and shell with Flustra and a flatfish	Remotely Operated Vehicle	ROV	ENVISIO	56.071255	-1.438578	2 62.0	5	5	5	20	65		100	coarse set	2	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	EB	Good		EB	
STN080	BB_STILL _STN080 _TAKE01 4_03	12.47.52	16/02/2023	Sand and shell with terebellida e and Flustra	Remotely Operated Vehicle	BOV	ENVISIO N	56 071255	-1 438578	3 62.0		5	5	20	75		100	002758 580		Subtidal Coarse Sediment	Subtidal Sands and Gravels	55 505	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse coarse	FB	Good		FB	
STN081	BB_STILL _STN081 _TAKE00 6_01	09:11:56	16/02/2023	Sand and mud with chaetopter idae	Remotely Operated Vehicle	ROV	ENVISIO N	55.983000	-1.117530	1 63.0			-		80	20	100	mud and s		Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN081	BB_STILL _STN081 _TAKE00 6_02	09:11:56	16/02/2023	Sand and mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.983000	-1.117530	2 63.0					80	20	100	mud and s	ic.	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN081	BB_STILL _STN081 _TAKE00 6_03	09:11:56	16/02/2023	Sand and mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.983000	-1.117530	3 63.0					80	20	100	mud and s	č	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN082	STN082 TAKE01 5_01	13:12:20	16/02/2023	Rippled sand with turf Rippled	Remotely Operated Vehicle	_ROV	ENVISIO N	56.045815	-1.397137	1 69.0				5	95		100	sand and i	n	Subtidal Sand	Subtidal Sands and Gravels	SS.SSa.C MuSa	Circalittor al muddy sand	EB	Good		EB	
STN082	_STN082 _TAKE01 5_02	13:12:20	16/02/2023	sand with a crustacea	Remotely Operated Vehicle	_ROV	ENVISIO N	56.045815	-1.397137	2 69.0				5	95		100	sand and i	2	Subtidal Sand	Sands and Gravels	SS.SSa.C MuSa	Circalittor al muddy sand	EB	Good		EB	
STN082	_STN082 _TAKE01 5_03	13:12:20	16/02/2023	Rippled sand	Remotely Operated Vehicle	_ROV	ENVISIO N	56.045815	-1.397137	3 69.0				5	95		100	sand and i	n	Subtidal Sand	Sands and Gravels	SS.SSa.C MuSa	Circalittor al muddy sand	EB	Good		EB	
STN083	_STN083 _TAKE01 6_01	13:31:07	16/02/2023	coarse sand with Flustra	Remotely Operated Vehicle	_ROV	ENVISIO N	56.021395	-1.343992	1 62.0				5	95		100	sand and i	n	Subtidal Sand	Sublidal Sands and Gravels	SS.SSa.C MuSa	Circalittor al muddy sand	EB	Good		EB	

	BB STILL			Rippled coarse sand with																		Subtidal		Circalittor					
STN083	_STN083 _TAKE01 6 02	13:31:07	16/02/2023	a chaetopter idae	Remotely Operated Vehicle	ROV	ENVISIO N	56.021395	-1.343992	2 62.0					5	95		100	sand and i	n	Subtidal Sand	Sands and Gravels	SS.SSa.C MuSa	al muddy sand	EB	Good	E	B	
STN083	BB_STILL _STN083 _TAKE01	13:31:07	16/02/2023	Rippled coarse	Remotely Operated	BOV	ENVISIO	56 021305	-1 3/3002	3 62 0					5	95		100	sand and		Subtidal	Subtidal Sands and Gravels	SS.SSa.C	Circalittor al muddy sand	FB	Good		B	
0711000	BB_STILL _STN084 _TAKE01	10.17.07	10/02/2023	Mud, sand and shell	Remotely Operated		ENVISIO	55.000500	1.040302						<u> </u>	33		100	Sanu anu i		Subtidal Mixed		SS.SMx.C	Circalittor al mixed sediment		6000			
STN084	7_01	13:47:25	16/02/2023	With turf Mud, sand	Vehicle	_ROV	N	55.998502	-1.302493	1 62.0			10		10	70	10	100	mixed sed	i.	Sediment		Mx		EB	Good	E	B	
STN084	BB_STILL _STN084 _TAKE01 7_02	13:47:25	16/02/2023	and pebbles with an urchin	Remotely Operated Vehicle	_ROV	ENVISIO N	55.998502	-1.302493	2 62.0	10			0	20	55	10	100	mixed sed	ii.	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good	E	B	
STN084	BB_STILL _STN084 _TAKE01 7_03	13:47:25	16/02/2023	Mud, sand and cobbles with Flustra and a nudibranc h	Remotely Operated Vehicle	_ROV	ENVISIO N	55.998502	-1.302493	3 62.0		5			10	65	10	100	mixed sed	i.	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good	Caryophilli a clear in video E	B	
STN085	BB_STILL _STN085 _TAKE01 8_01	14:03:37	16/02/2023	Sand and mud with pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.985303	-1.266577	1 67.0					1	79	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	B	
STN085	BB_STILL _STN085 _TAKE01 8 02	14:03:37	16/02/2023	Sand and mud with Flustra and hydroids	Remotely Operated Vehicle	ROV	ENVISIO N	55 985303	-1 266577	2 67.0					1	79	20	100	mud and s		Subtidal Mud	Mud Habitats in Deepwate	SS.SMu.C FiMu	Circalittor al fine mud	FB	Good	F	-в	
STN085	BB_STILL _STN085 _TAKE01 8_03	14.03.37	16/02/2023	Sand and	Remotely Operated	ROV	ENVISIO	55 985303	-1 266577	3 67.0					1	79	20	100	mud and a		Subtidal	Mud Habitats in Deepwate	SS.SMu.C	Circalittor al fine mud	FB	Good	F	B	
0111000	BB STILL	14.00.07	10/02/2023	Indu	Venicie	_100		55.505505	-1.200377	5 07.0					1	15	20	100	muu anu s		Muu	Mud	T ING	Circolittor		9000			
STN086	_STN086 _TAKE01 9_01	14:19:08	16/02/2023	Sandy mud with pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.971087	-1.235850	1 71.0						80	20	100	mud and s	² C	Subtidal Mud	Habitats in Deepwate r	SS.SMu.C FiMu	al fine mud	EB	Good	E	ΞB	
STN086	BB_STILL _STN086 _TAKE01 9_02	14:19:08	16/02/2023	Sandy mud with a fish	Remotely Operated Vehicle	_ROV	ENVISIO N	55.971087	-1.235850	2 71.0						80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	ΞB	
STN086	BB_STILL _STN086 _TAKE01 9 03	14:19:08	16/02/2023	Sandy mud with pennatula and a chaetopter idae	Remotely Operated Vehicle	ROV	ENVISIO N	55.971087	-1.235850	3 71.0						80	20	100	mud and s	5d	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	B	
STN087	BB_STILL _STN087 _TAKE02 0_01	14:35:20	16/02/2023	Mud with turf and a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.948913	-1.202583	1 76.0						70	30	100	mud and s	ŝć	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	B	
STN087	BB_STILL _STN087 _TAKE02 0_02	14:35:20	16/02/2023	Mud with a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.948913	-1.202583	2 76.0						70	30	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	B	
STN087	BB_STILL _STN087 _TAKE02 0_03	14:35:20	16/02/2023	Mud with pennatula and a burrow	Remotely Operated Vehicle	_ROV	ENVISIO N	55.948913	-1.202583	3 76.0						70	30	100	mud and s	òć	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C FiMu	Circalittor al fine mud	EB	Good	E	B	
	BB_STILL _STN088 _TAKE02			Mud, sand, cobbles, pebbles and shell with hydroids	Remotely Operated		ENVISIO														Subtidal Mixed		SS.SMx.C	Circalittor al mixed sediment					
STN088	1_01	14:50:39	16/02/2023	and crust	Vehicle	_ROV	Ν	55.938325	-1.166208	1 64.0	10			5	10	45	10	100	mixed sed	li	Sediment		Mx		EB	Good	E	B	

STN088	BB_STILL _STN088 _TAKE02 1_02	14:50:39	Mud, sand, pebbles and cobbles with Remoi crustacea Opera 16/02/2023 and turf Vehicl	ely ed edROV	ENVISIO N	55.938325	-1.166208 2	64.0	10		4	5	20	45	10	100	mixed sedi	i.	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good		EB	
STN088	BB_STILL _STN088 _TAKE02 1_03	14:50:39	Mud, sand, shell and a cobble with starfish Remoi and Opera 16/02/2023 hydroids Vehicl	ely ed ∋ROV	ENVISIO N	55.938325	-1.166208 3	64.0	10			10	20	40	10	100	mixed sedi	i	Subtidal Mixed Sediment		SS.SMx.C Mx	Circalittor al mixed sediment	EB	Good		EB	
STN089	BB_STILL _STN089 _TAKE02 2_01	15:07:47	Sand with Opera 16/02/2023 a hermit Vehicl	ely ed e _ROV	ENVISIO N	55.912462	-1.123957 1	68.0		5			5	85	5	100	coarse sec	1	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	
STN089	BB_STILL _STN089 _TAKE02 2_02	15:07:47	Sand with a hermit crab and chaetopter 16/02/2023 idae Vehicl	ely ed e _ROV	ENVISIO N	55.912462	-1.123957 2	68.0		5			5	85	5	100	coarse sec	2	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	
STN089	BB_STILL _STN089 _TAKE02 2_03	15:07:47	an Remo aequipect Opera 16/02/2023 en Vehicl	ely ed e _ROV	ENVISIO N	55.912462	-1.123957 3	68.0				5	5	85	5	100	coarse sec	2	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	
STN090	BB_STILL _STN090 _TAKE00 3_01	08:17:21	Sand and Remo mud with Opera 16/02/2023 a flatfish Vehicl	ely ed e _ROV	ENVISIO N	55.924668	-1.071638 1	68.0					5	75	20	100	mud and s	¢	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN090	BB_STILL _STN090 _TAKE00 3_02	08:17:21	Sand and Remo mud with Opera 16/02/2023 turf Vehicl	ely ed e _ROV	ENVISIO N	55.924668	-1.071638 2	68.0						80	20	100	mud and s	¢	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN090	BB_STILL _STN090 _TAKE00 3_03	08:17:21	Sand and mud with Remo a hermit Opera 16/02/2023 crab Vehicl	ely ed e _ROV	ENVISIO N	55.924668	-1.071638 3	68.0						80	20	100	mud and s	¢	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN091	BB_STILL _STN091 _TAKE02 3_01	15:27:14	Mud and sand with a hermit Remo and a Opera 16/02/2023 pennatula Vehicl	ely ed e _ROV	ENVISIO N	55.895005	-1.087165 1	75.0						80	20	100	mud and s	á	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Poor	Dark, water column	EB	
STN091	BB_STILL _STN091 _TAKE02 3_02	15:27:14	Mud and sand with Remo a Opera 16/02/2023 pennatula Vehicl	ely ed e _ROV	ENVISIO N	55.895005	-1.087165 2	75.0						80	20	100	mud and s	đ	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN091	BB_STILL _STN091 _TAKE02 3_03	15:27:14	Mud and Remo sand with Opera 16/02/2023 Flustra Vehicl	ely ed e _ROV	ENVISIO N	55.895005	-1.087165 3	75.0						80	20	100	mud and s	đ	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN092	BB_STILL _STN092 _TAKE02 4_01	15:45:38	Remo Mud and Opera 16/02/2023 sand Vehicl	ely ed e _ROV	ENVISIO N	55.876570	-1.048817 1	76.0						80	20	100	mud and s	á	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN092	BB_STILL _STN092 _TAKE02 4_02	15:45:38	Mud and sand with Remo a Opera 16/02/2023 pennatula Vehicl	ely ed e _ROV	ENVISIO N	55.876570	-1.048817 2	76.0						80	20	100	mud and s	đ	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN092	BB_STILL _STN092 _TAKE02 4_03	15: <mark>45:38</mark>	Sandy mud with a Remoi chaetopter Opera 16/02/2023 idae Vehicl	ely ed e _ROV	ENVISIO N	55.876570	-1.048817 3	76.0						80	20	100	mud and s	a.	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN093	BB_STILL _STN093 _TAKE02 5_01	16:00:45	Remo Sandy Opera 16/02/2023 mud Vehicl	ely ed e _ROV	ENVISIO N	55.863215	-1.024152 1	79.0						80	20	100	mud and s	a	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN093	BB_STILL _STN093 _TAKE02 5_02	16:00:45	Sandy mud with Remo a Opera 16/02/2023 pennatula Vehicl	ely ed e _ROV	ENVISIO N	55.863215	-1.024152 2	79.0						80	20	100	mud and s	á	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	

STN093	BB_STILL _STN093 _TAKE02 5_03	16:00:45 16/0	s r 202/2023	Sandy mud with a pennatula	Remotely Operated Vehicle	_ROV	ENVISIO N	55.863215	-1.024152	3 79.0					80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good	Pennatula clearly visible in video	ЕВ	
STN096	BB_STILL _STN096 _TAKE00 8_01	09:59:18 16/0	N c 92/2023 a	Mud and coarse sand with a cobble	Remotely Operated Vehicle	_ROV	ENVISIO N	56.003318	-1.130133	1 63.0		5		5	80	5	100	coarse se	a	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	EB	Good		ЕВ	
STN096	BB_STILL _STN096 _TAKE00 8_02	09:59:18 16/	N c 92/2023 F	Mud and coarse sand with Flustra	Remotely Operated Vehicle	_ROV	ENVISIO N	56.003318	-1.130133	2 63.0		5		5	85	5	100	coarse se	a	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	EB	Good	Pleuronec tiformes clear in video	ЕВ	
STN096	BB_STILL _STN096 _TAKE00 8_03	09:59:18 16/	N c 92/2023 F	Mud and coarse sand with Flustra	Remotely Operated Vehicle	_ROV	ENVISIO N	56.003318	-1.130133	3 63.0		5		5	85	5	100	coarse se	a	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands)	EB	Good		ЕВ	
STN100	BB_STILL _STN100 _TAKE00 5_01	08:51:09 16/0	r 02/2023 t	Sand and mud with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	55.962267	-1.100363	1 66.0					80	20	100	mud and a	Sé	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	CA
STN100	BB_STILL _STN100 _TAKE00 5_02	08:51:09 16/0	02/2023 r	Sand and mud with turf and hydroids	Remotely Operated Vehicle	_ROV	ENVISIO N	55.962267	-1.100363	2 66.0					80	20	100	mud and s	56	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good	Brachyura clear in video	EB	
STN100	BB_STILL _STN100 _TAKE00 5_03	08:51:09 16/0	02/2023 e	Sand and mud with an aequipect en	Remotely Operated Vehicle	_ROV	ENVISIO N	55.962267	-1.100363	3 66.0					80	20	100	mud and s	54	Subtidal Mud	Mud Habitats in Deepwate r	SS.SMu.C SaMu	Circalittor al sandy mud	EB	Good		EB	
STN102	BB_STILL _STN102 _TAKE00 7_01	09:40:46 16/0	02/2023 s	Coarse sand	Remotely Operated Vehicle	_ROV	ENVISIO N	56.030605	-1.152585	1 60.0			10		85	5	100	coarse se	d	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	
STN102	BB_STILL _STN102 _TAKE00 7_02	09:40:46 16/0	02/2023 t	Coarse sand with turf	Remotely Operated Vehicle	_ROV	ENVISIO N	56.030605	-1.152585	2 60.0	5	5	10		75	5	100	coarse se	d	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	
STN102	BB_STILL _STN102 _TAKE00 7_03	09:40:46 16/0	02/2023 a	Coarse sand with a scallop	Remotely Operated Vehicle	_ROV	ENVISIO N	56.030605	-1.152585	3 60.0	5	5	20		65	5	100	coarse se	d	Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS.SCS.C CS	Circalittor al coarse sediment	EB	Good		EB	СА
STN104	BB_STILL _STN104 _TAKE00 9 01	10:23:40 16/	F s s 02/2023 4	Rippled sand with some shell, turf and Alcyonium	Remotely Operated Vehicle	ROV	ENVISIO	56 059907	-1 172700	1 60.0			5	5	90		100	coarse se		Subtidal Coarse Sediment	Subtidal Sands and Gravels	SS SCS	Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse coarse	EB	Good		FB	

					-							 																
																								Sublittoral coarse				
																								sediment				
				Dinnlad																				cobbles				
				sand with																				and pebbles,				
	BB_STILL STN104			some	Remotely																Subtidal	Subtidal Sands		gravels				
	_TAKE00			a hermit	Operated		ENVISIO														Coarse	and		coarse				
STN104	9_02	10:23:40	16/02/2023	crab	Vehicle	_ROV	N	56.059907	-1.172700	2	60.0				10	90		100	coarse sed		Sediment	Gravels	SS.SCS	sands) Sublittoral	EB	Good	EB	CA
																								coarse				
																								sediment (unstable				
																								cobbles				
				Rippled																				pebbles,				
	BB_STILL _STN104			sand with some	Remotely																Subtidal	Subtidal Sands		gravels and				
STN104	_TAKE00	10.23.40	16/02/2023	shell and	Operated	POV	ENVISIO	56 050007	1 172700	2	60.0			5	10	85		100			Coarse	and	ee ere	coarse	ER	Cood	ER	
0111104	BB_STILL	10.23.40	10/02/2023		Verlicie	_100		50.055507	-1.172700	5	00.0			5		00		100	COAISE SEC		Gediment	Giaveis	00.000	Sands)		300u		
	_STN106 TAKE01			Sand and mud with	Remotely Operated		ENVISIO														Subtidal Mixed		SS.SMx.C	al mixed				
STN106	0_01	10:45:15	16/02/2023	turf Sand and	Vehicle	_ROV	N	56.097110	-1.203212	1	67.0				10	80	10	100	mixed sed	í.	Sediment		Mx	sediment	EB	Good	EB	
	_STN106			mud with	Remotely																Subtidal			Circalittor				
STN106	_TAKE01 0_02	10.45.15	16/02/2023	an anemone	Operated Vehicle	ROV	ENVISIO N	56 097110	-1 203212	2	67.0				10	80	10	100	mixed sed	i	Mixed Sediment		SS.SMx.C Mx	sediment	FB	Good	FB	
				Sand and						_																		
	_STN106			a a	Remotely																Subtidal			Circalittor al mixed				
STN106	_TAKE01 0_03	10.42.12	16/02/2023	chaetopter idae	Operated Vehicle	ROV	ENVISIO N	56 097110	-1 203212	3	67.0	5			5	80	10	100	mixed sed	i	Mixed Sediment		SS.SMx.C Mx	sediment	FB	Good	FB	
		10110110	10/02/2020							-		<u> </u>						100	/////ou 000							0000		
	_STN108			Sand and	Remotely																	Habitats in		Circalittor al sandy				
STN108	_TAKE01	11.07.25	16/02/2023	mud with	Operated Vehicle	ROV	ENVISIO N	56 137678	-1 238987	1	65.0					80	20	100	mud and s		Subtidal Mud	Deepwate	SS.SMu.C SaMu	mud	FB	Good	FB	
			10/02/2020	Sand and														100	inda ana s							0000		
	BB_STILL _STN108			mud with turf and a	Remotely																	Mud Habitats in		Circalittor al sandv				
STN108	_TAKE01	11.07.25	16/02/2023	chaetopter idae	Operated Vehicle	ROV	ENVISIO N	56 137678	-1 238987	2	65.0					80	20	100	mud and s		Subtidal Mud	Deepwate	SS.SMu.C SaMu	mud	FB	Good	FB	
	1_02	11.07.20	10/02/2020	luuo	Voniolo			00.101010	1.200001	-	00.0						20	100	indu and s		maa		ound		20	0000		
	BB_STILL _STN108				Remotely																	Mud Habitats in		Circalittor al sandy				
STN108	_TAKE01	11.07.25	16/02/2023	Sand and	Operated Vehicle	ROV	ENVISIO	56 137678	-1 238987	3	65.0					80	20	100	mud and s		Subtidal Mud	Deepwate	SS.SMu.C SaMu	mud	FB	Good	FB	
	1_00	11.07.20	10/02/2020	indu	Voniolo			00.101010	1.200001	0	00.0						20	100	indu and s		maa		ound		20	0000		
	_STN109			Sand and	Remotely																	Mud Habitats in		Circalittor al sandy				
STN109	_TAKE00	07:41:24	16/02/2023	mud with	Operated Vehicle	ROV	ENVISIO	55 887797	-1 041705	1	70.0					80	20	100	mud and s		Subtidal Mud	Deepwate	SS.SMu.C SaMu	mud	FB	Good	FB	
			10/02/2020		· · · · · · · ·													100	inda ana s							0000		
	BB_STILL _STN109			Sand and	Remotely																	Mud Habitats in		Circalittor al sandy				
STN109	_TAKE00	07:41:24	16/02/2023	mud with a starfish	Operated Vehicle	ROV	ENVISIO	55 887797	-1 041705	2	70.0					80	20	100	mud and s		Subtidal Mud	Deepwate	SS.SMu.C SaMu	mud	FB	Good	FB	
0111109	1_02	07.41.24	10/02/2023	a starrisri	Verlicie	_100	IN .	55.007757	-1.041703	2	10.0					00	20	100	nuu anu s	۰ ۹	Maa	1	Galvia			GOOU		
	BB_STILL STN109			Sand and mud with	Remotely																	Mud Habitats in		Circalittor al sandv				
STN100	_TAKE00	07:41:24	16/02/2023	sabellidae	Operated	ROV	ENVISIO	55 887707	-1 0/1705	3	70.0					80	20	100	mud and a		Subtidal Mud	Deepwate	SS.SMu.C	mud	FB	Cood	FB	
3111109	1_03	07.41.24	10/02/2023		Venicie	_1.01	IN .	55.007797	-1.041703	5	70.0					00	20	100	mua ana s	c	IVIUU		Salviu			Good		
	BB_STILL STN110			Sand and mud with	Remotely																	Mud Habitats in		Circalittor al sandy				
OTNI440	_TAKE00	07.50.22	16/00/2022	a	Operated	DOV	ENVISIO	55 000100	1 052420	1	75.0						20	100			Subtidal	Deepwate	SS.SMu.C	mud	ED		ED.	
311110	2_01	07.30.32	10/02/2023	permatula	Venicie	_KOV		55.900105	-1.055426	1	75.0					80	20	100	mua ana s	č	Iviuu	1	Salviu		LD	Good	ED	
	BB_STILL STN110			Sand and	Remotelv																	Mud Habitats in		Circalittor				
STN440	_TAKE00	07-50-22	16/02/2022	mud with	Operated	BOV	ENVISIO	55 006460	1 052400	2	75.0					80	20	100	max cal as a st		Subtidal	Deepwate	SS.SMu.C	mud	EB	Cood	EP	CA
5111110	2_02	07:58:32	10/02/2023	un	Venicie	_KUV	IN	55.900163	-1.053428	2	10.0					00	20	700	mud and s	d	iviud	1	Saiviu		ED	G000	EB	CA
	BB_STILL STN110				Remotely																	Mud Habitats in		Circalittor				
07.14	_TAKE00	07 50 55	1010010	Sand and	Operated		ENVISIO		4 0 - 0		75.0										Subtidal	Deepwate	SS.SMu.C	mud	50			
STN110	2_03	07:58:32	16/02/2023	mud	venicle	LKOV	N	55.906163	1-1.053428	3	/5.0			1	1	80	20	100	mud and s	id.	Wud	lL	SaMu	1	EB	Good	EB	

F. Biotope Descriptions

SS.SMx.OMx - Offshore circalittoral mixed sediment

Offshore (deep) circalittoral habitats with slightly muddy mixed gravelly sand and stones or shell. This habitat may cover large areas of the offshore continental shelf although there is relatively little data available. Such habitats are often highly diverse with a high number of infaunal polychaete and bivalve species. Animal communities in this habitat are closely related to offshore gravels and coarse sands and in some areas populations of the horse mussel Modiolus modiolus may develop in these habitats (see SS.SBR.SMus.ModMx). Only one biotope is currently described under this biotope complex.

SS.SMx.CMx - Circalittoral mixed sediment

Mixed (heterogeneous) sediment habitats in the circalittoral zone (generally below 15-20 m) including well mixed muddy gravelly sands or very poorly sorted mosaics of shell, cobbles and pebbles embedded in or lying upon mud, sand or gravel. Due to the variable nature of the seabed a variety of communities can develop which are often very diverse. A wide range of infaunal polychaetes, bivalves, echinoderms and burrowing anemones such as *Cerianthus lloydii* are often present in such habitats and the presence of hard substrata (shells and stones) on the surface enables epifaunal species to become established, particularly hydroids such as *Nemertesia* spp. and *Hydrallmania falcata*. The combination of epifauna and infauna can lead to species rich communities. Coarser mixed sediment communities may show a strong resemblance, in terms of infauna, to biotopes within the SS.SCS complex. However, infaunal data for this biotope complex is limited to that described under the biotope SS.SMx.CMx.KurThyMx, and so are not representative of the infaunal component of this biotope complex.

SS.SMx.CMx.KurThyMx - Kurtiella bidentata and Thyasira spp. in circalittoral muddy mixed sediment

In moderately exposed or sheltered, circalittoral muddy sands and gravels a community characterised by the bivalves *Thyasira* spp. (often *Thyasira flexuosa*), *Kurtiella bidentata* and *Prionospio fallax* may develop. Infaunal polychaetes such as *Hilbigneris gracilis*, *Chaetozone setosa* and *Scoloplos armiger* are also common in this community whilst amphipods such as *Ampelisca* spp. and the cumacean *Eudorella truncatula* may also be found in some areas. The brittlestar *Amphiura filiformis* may also be abundant at some sites. Conspicuous epifauna on larger pebbles or shell gravel may include hydroids, encrusting bryozoans *Escharella* spp. particularly *Escharella immersa*, *Disporella hispida*, and, in shallower waters, maerl (*Phymatolithon calcareum*), although at very low abundances and not forming maerl beds. In some sheltered areas, organic enrichment of this biotope increases the occurrence of species such as *Ophryotrochas*p., *Scoloplos* sp., *Mediomastus fragilis*, *Lumbrineris* sp., Capitellids and *Tubificoides pseudogaster*.

SS.SSa.CFiSa.ApriBatPo - Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand

In circalittoral and offshore medium to fine sands between 25 m and 100 m a community characterised by the bivalve Abra prismatica, the amphipod Bathyporeia elegans and polychaetes as Scoloplos such armiger, Spiophanes bombyx, Aonides paucibranchiata, Chaetozone setosa. Ophelia borealis and Nephtys longosetosa may be found. The cumacean Eudorellopsis deformis and the opheliid polychaetes such as Ophelia borealis, Travisia forbesii or Ophelina neglecta are often present in this biotope. The brittlestar Amphiura filiformis may also be common at some sites. This biotope has been reported in the central and northern North Sea (Basford and Eleftheriou, 1989; Künitzer et al., 1992). Variants to the biotope, with sparser fauna in medium coarse sand with some gravel in deeper water, have been found off the east coast of England, similarly comprised of annelid worms such as Nephtys cirrosa, Ophelia borealis, and Spio armata, brittle stars Amphipholis squamata, and crustacea such as Gastrosaccus spinifer. In variable gravelly sands with pebbles, sparse fauna may also include bryozoans, such as Conopeum reticulum and Aspidelectra melolontha, and there may be presence of Sabellaria spinulosa.

SS.SSa.OSa.OfusAfil - Owenia fusiformis and Amphiura filiformis in offshore circalittoral sand or muddy sand

Areas of slightly muddy sand (generally <20% mud) in offshore waters may be characterised by high numbers of the tube building oweniid polychaete Owenia fusiformis and Galathowenia sp., often with the brittlestar Amphiura filiformis. Whilst O. fusiformis is also found in other circalittoral or offshore biotopes it usually occurs in lower abundances than in SS.SSa.OSa.OfusAfil. Other species found in this community are the polychaetes Goniada maculata, Pholoe inornata, Diplocirrus glaucus, Chaetozone setosa and Spiophanes kroyeri with occasional bivalves such as Timoclea ovata and Thyasira equalis. The sea cucumber Labidoplax buski and the cumacean Eudorella truncatula are also commonly often found in this biotope. This biotope along with SS.SMu.CSaMu.ThyEten, SS.SMu.CSaMu.AfilKurAnit, SS.SMu.CSaMu.AfilEten and SS.SMu.OMu.PjefThyAfil, may comprise the Amphiura dominated components of the 'offshore muddy sand association' (Jones 1951; Mackie 1990) and the infralittoral etage described by Glemarec (1973). Variants of the biotope may contain the characteristic high numbers of Owenia fusiformis and Amphiura filiformis but may also include Arctica islandica and Ennucula tenuis. Where these occur, biotope considered а transitionary variant between SS.SSa.OSa.OfusAfil the may be and SS.SMu.CSaMu.AfilKurAnit.

SS.SMu.CSaMu - Circalittoral sandy mud

Circalittoral, cohesive sandy mud, typically with over 20% silt/clay, generally in water depths of over 10 m, with weak or very weak tidal streams. This habitat is generally found in deeper areas of bays and marine inlets or offshore from less wave exposed coasts. Seapens such as *Virgularia mirabilis* and brittlestars such as *Amphiura* spp. are particularly characteristic of this habitat whilst infaunal species include the tube building polychaetes *Lagis koreni* and *Owenia fusiformis*, and deposit feeding bivalves such as *Kurtiella bidentata* and *Abra* spp.

SS.SMu.CSaMu.ThyEten - Thyasira spp. and Ennucula tenuis in circalittoral sandy mud

Circalittoral cohesive sandy muds with small quantities of gravel, off sheltered or moderately exposed coasts may support populations characterised by *Thyasira* spp., in particular *Thyasira flexuosa*. Other characteristic taxa may include *Ennucula tenuis*, *Goniada maculate* and in some areas *Rhodine gracilior*. *Kurtiella bidentata*, *Abra alba*, *Harpinia antennaria* and *Amphiura filiformis* may be abundant in some examples of this biotope. Whilst moderately diverse, animal abundances are often low and it is possible that the biotope is the result of sedimentary disturbance e.g. from trawling and is possibly an impoverished version of SS.SMu.CSaMu.AfilEten. Collectively the biotopes SS.SMu.CSaMu.ThyEten, SS.SMu.CSaMu.AfilKurAnit, SS.SMu.CSaMu.AfilEten, SS.SMu.OMu.PjefThyAfil, and SS.SSa.OSa.OfusAfil, may form the *Amphiura* dominated components of the 'off-shore muddy sand association' described by other workers (Jones 1951; Thorson 1957; Mackie 1990) and the infralittoral etage described by Glemarec (1973).

SS.SMu.OMu - Offshore circalittoral mud

In mud and cohesive sandy mud in the offshore circalittoral zone, typically below 50-70 m, a variety of faunal communities may develop, depending upon the level of silt/clay and organic matter in the sediment. Communities are typically dominated by polychaetes but often with high numbers of bivalves such as *Thyasira* spp., echinoderms and foraminifera.

SS.SMu.OMu.PjefThyAfil - Paramphinome jeffreysii, Thyasira spp. and Amphiura filiformis in offshore circalittoral sandy mud

Deep, offshore cohesive sandy mud communities characterised by the polychaete *Paramphinome jeffreysii*, bivalves such as *Parathyasira equalis* and *Thyasira gouldi* (sometimes in elevated densities) and the brittlestar *Amphiura filiformis*. Other taxa may include *Laonice cirrata*, the holothurian *Labidoplax buskii* and the polychaetes *Goniada maculata*, *Spiophanes kroyeri* and *Aricidea (Acmira) catherinae*. *Amphiura chiajei* may be occasional in this biotope as may *Hermania scabra*, *Levinsenia gracilis*, and *Pholoe inornata*. In areas of the North Sea, such as the Swallow Sand MCZ, this biotope has been observed in sediments with a coarse material component. This biotope along with

SS.SMu.CSaMu.ThyEten, SS.SMuCSaMu.AfilKurAnit, SS.SMu.CSaMu.AfilEten and SS.SSa.OSa.OfusAfil, may comprise the *Amphiura* dominated components of the 'off-shore muddy sand association' (Jones 1951; Mackie 1990) and the infralittoral etage described by Glemarec (1973) and may exist in a transitional environment with SS.SSa.OSa.OfusAfil.

SS.SSa.IMuSa. – Infralittoral muddy sand

Non-cohesive muddy sand (with 5% to 20% silt/clay) in the infralittoral zone, extending from the extreme lower shore down to more stable circalittoral zone at about 15-20 m. The habitat supports a variety of animal-dominated communities, particularly polychaetes (*Magelona mirabilis, Spiophanes bombyx* and *Chaetozone setosa*), bivalves (*Fabulina fibula* and *Chamelea gallina*) and the urchin *Echinocardium cordatum*.

SS.SSa.IMuSa.FfabMag - *Fabulina fabula* and *Magelona mirabilis* with venerid bivalves and amphipods in infralittoral compacted fine muddy sand

In stable, fine, compacted sands and slightly muddy sands in the infralittoral and littoral fringe, communities dominated by venerid bivalves such as Chamelea gallina occur. This biotope may be characterised by a prevalence of Fabulina fabula and Magelona mirabilis or other species of Magelona (e.g. M. filiformis). Other taxa, including the amphipod Bathyporeia spp. and polychaetes such as Chaetozone setosa, Spiophanes bombyx and Nephtys spp. are also commonly recorded. In some areas the bivalve Spisula elliptica may also occur in this biotope in low numbers. The community is relatively stable in its species composition, however, numbers of Magelona and F. fabulina tend to fluctuate. Around the Scilly Isles numbers of F. fabulina in this biotope are uncommonly low whilst these taxa are often found in higher abundances in muddier communities (presumably due to the higher organic content). In deeper, offshore variants of this biotope, although still present, there is a reduction in the component species F. fabula, whilst Magelona filiformis, Bathyporeia spp., annelid and nemertean worms, and Amphiuridae may be more common. Consequently, it may be better to revise this biotope on the basis of less ubiquitous taxa such as key amphipod species (E.I.S. Rees pers. comm. 2002) although more data is required to test this. SS.SSa.IMuSa.FfabMag and SS.SCS.ICS.MoeVen are collectively considered to be the 'shallow Venus community' or 'boreal off-shore sand association' of previous workers (see Petersen 1918; Jones 1950; Thorson 1957). These communities have been shown to correlate well with particular levels of current induced 'bed-stress' (Warwick & Uncles 1980). The 'Arctic Venus Community' and 'Mediterranean Venus Community' described to the north and south of the UK (Thorson 1957) probably occur in the same habitat and appears to be the same biotope described as the Ophelia borealis community in northern France and the central North Sea (Künitzer et al. 1992). Sites with this biotope may undergo transitions in community composition. The epibiotic biotopes SS.SSa.IMUSa.EcorEns and SS.SSa.IMuSa.ArelSa may also overlay this biotope in some areas.

SS.SCS.OCS - Offshore circalittoral coarse sediment

Offshore (deep) circalittoral habitats with coarse sands and gravel or shell. This habitat may cover large areas of the offshore continental shelf although there is relatively little quantitative data available. Such habitats are quite diverse compared to shallower versions of this habitat and generally characterised by robust infaunal polychaete and bivalve species. Animal communities in this habitat are closely related to offshore mixed sediments and in some areas settlement of *Modiolus modiolus* larvae may occur and consequently these habitats may occasionally have large numbers of juvenile *M. modiolus*. In areas where the mussels reach maturity their byssus threads bind the sediment together, increasing stability and allowing an increased deposition of silt leading to the development of the biotope SS.SBR.SMus.ModMx.

CR.MCR - Soft rock communities

This biotope complex occurs on moderately wave-exposed, circalittoral soft bedrock subject to moderately strong tidal streams. As this complex is found in highly turbid water conditions, the circalittoral zone may begin at the low water mark, due to poor light penetration. This complex is dominated by the piddock *Pholas dactylus*. Other species typical of this complex include the polychaete *Polydora* and *Bispira volutacornis*, the sponges *Cliona*

celata and *Suberites ficus*, the bryozoan *Flustra foliacea*, *Alcyonium digitatum*, the starfish *Asterias rubens*, the mussel *Mytilus edulis* and the crab *Necora puber* and *Cancer pagurus*. Foliose red algae may also be present. Three biotopes have been identified within this complex: Pid, Pol and Hia. Please note: in areas subject to very high turbidity, biotopes within this biotope complex may occur in the infralittoral and even the littoral zone

Creating a better environment

naturalpower.com sayhello@naturalpower.com

For full details on our ISO and other certifications, please visit our website.

NATURAL POWER CONSULTANTS LIMITED, THE NATURAL POWER CONSULTANTS LIMITED, NATURAL POWER SARL, NATURAL POWER CONSULTANTS (IRELAND) LIMITED, NATURAL POWER LLC, NATURAL POWER S.A, NATURAL POWER SERVICES LIMITED AND NATURAL POWER OPERATIONS LIMITED (collectively referred to as "NATURAL POWER") accept no responsibility or liability for any use which is made of this document other than by the Client for the purpose for which It was originally commissioned and prepared. The Client shall treat all information in the document as confidential. No representation is made regarding the completeness, methodology or current status of any material referred to in this document. All facts and figures are correct at time of print. All rights reserved. VENTOS" is a registered trademark of NATURAL POWER. MelogoleTM, WindCentreTM, ControlCentreTM, ForeSiteTM, vuWindTM, WindManagerTM and OceanPodTM are trademarks of NATURAL POWER.

No part of this document or translations of it may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any other information storage and retrieval system, without prior permission in writing from Natural Power All facts and figures correct at time of print. All rights reserved. © Copyright 2020